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Abstract – In modern wireless communication systems, the 

efficient transmission of high-quality images is a matter of 

paramount importance. In recent several years, compressed 

sensing (CS) has emerged as a powerful technique for reducing 

the energy consumption, improving the data compression, and 

lowering the bandwidth requirements for an image transmission. 

However, communication channels, especially wireless channels, 

often introduce various forms of interferences and fading, such 

as Rayleigh fading, which can severely degrade the received 

image quality. This paper proposes a novel approach that 

combines compressed sensing with polar code to improve the 

reliability of image communication through a Rayleigh fading 

channel. In this work first, we leverage the advantages of 

compressed sensing to significantly reduce the amount of data 

that needs to be transmitted while maintaining acceptable image 

quality. By exploiting sparsity of the standard images, we can 

sample and compress the images efficiently. Next, we have 

applied polar code, known for its superior error correction 

capabilities, to protect the compressed data from channel 

induced errors. The paper presents a comprehensive evaluation 

of the proposed system, including theoretical performance 

bounds and simulations in a Rayleigh fading channel. Our 

results demonstrate that the combination of compressed sensing 

and polar coding outperforms traditional communication 

schemes in terms of both optimal bandwidth requirement and 

image quality in the form of its reliability under challenging 

fading environments. This approach offers a promising solution 

for efficient and robust image transmission over wireless 

channels, with applications in remote sensing, surveillance, 

medical imaging, and many more. This paper focuses on 

choosing an optimum error correction scheme tailored for 

compressed sensing signals under severe channel conditions. The 

performance of the reconstructed image has been evaluated 

based on the performance parameters such as peak signal-to-

noise ratio (PSNR), structural similarity (SSIM) index and bit 

error rate (BER) under multipath fading conditions. Simulation 

results show the superior performance of the proposed model at 

a very low signal-noise ratio (SNR) in the range of 2.5 to 3.6 dB.  

Keywords – Compressed sensing, image communication, 

Rayleigh fading channel, polar code, wireless communication, 

error correction, image quality. 

 

 

 

I. INTRODUCTION 

In the realm of Modern wireless communication, the 

transmission of high-quality images has become increasingly 

essential for a multitude of applications, spanning from 

remote surveillance and medical imaging to multimedia 

content delivery. However, the inherently limited bandwidth 
of wireless channels poses a significant challenge to the 

efficient transmission of images, especially in the presence of 

adverse channel conditions such as Rayleigh fading. 

Compressed Sensing (CS) has emerged as a powerful 

technique to mitigate these challenges by significantly 

reducing the amount of data required for image transmission. 

Additionally, Polar Codes have gained recognition for their 

remarkable error correction capabilities. This paper explores 

the fusion of two innovative concepts CS and Polar Code to 

address the problem of image communication in a Rayleigh 

fading channel. In wireless communication [1-3], images are 

typically transmitted as large datasets, demanding substantial 

bandwidth resources. It results not only inefficient spectrum 

utilization but also makes image transmission vulnerable to 

channel impairments, including multi-path fading. Rayleigh 

fading, a characteristic of wireless channels, introduces 

random amplitude and phase variations to the transmitted 

signal, which can severely degrade the image quality. 

Therefore, there is a pressing need for novel techniques that 

can enable efficient image transmission, even in challenging 

fading environments. CS has gained prominence as an 

indigenous solution to this bandwidth bottleneck. It exploits 

the inherent sparsity of test images, wherein only a small 

fraction of the image’s coefficients carries significant 

information. By strategically sampling and compressing these 

coefficients, CS allows for the reconstruction of the original 

image with high fidelity. The compression technique not only 

conserves bandwidth but also enhances the resilience of image 

transmission in adverse channel conditions [4–6]. Polar 

Codes, on the other hand, have raised to prominence for their 

superior error correction capabilities. These codes, pioneered 

by Arikan, have been adopted in various communication 

standards due to their capacity-achieving properties. It 

effectively corrects the errors induced by the channel, making 

them a potent tool for enhancing communication reliability [9, 

12]. The primary objective of this research is to leverage the 

strengths of Compressed Sensing and Polar Coding to address 

the challenges posed by image communication in a Rayleigh 

fading channel.  By integrating CS for bandwidth-efficient 

image compression and Polar Codes for robust error 

correction [13, 15], we aim to achieve high-quality image 

transmission even in scenarios characterized by significant 

channel fading. In the subsequent sections of this paper, we 

will delve into the technical details of our proposed approach, 

https://doi.org/10.18485/mtts_mr.2024.30.2.1


 

 

Mikrotalasna revija Decembar 2024 

4 

conduct theoretical analyses, and present simulation results to 

demonstrate the    advantages of this fusion of Compressed 

Sensing and Polar Coding. The findings of this research hold 

the potential to revolutionize image communication in 

wireless networks, enabling efficient and reliable transmission 

of images over Rayleigh fading channels for a wide range of 

applications. Although, CS is a lossy data compression 

technique. However, it has been applied in various 

applications [16] and solved several practical challenges in 

recent years. The performance of compressive sensing with 

the data transmission over the wireless network, data 

acquisition, and data reconstruction method for images is 

evaluated and analysed in this research work. Nowadays, the 

increasing demand for internet services for various 

applications in daily life also poses critical challenges 

regarding the storage of huge visual data apart from its 

reliable communication through fading channels. However, in 

digital television broadcasting, the time latency between the 

data arriving at the receiver and the delivered image data on 

the TV screen is set in one directional transmission. However, 

this is not considered a critical issue because the old Analog 

TV receivers have this capability [17]. However, time latency 

becomes a critical issue in a live exchange of medical images 

and mobile phone conversations in two-directional digital 

communication systems. Errors and low efficiency may be 

induced during communication. The low efficiency and the 

high latency in modern digital communication are the general 

challenges faced during communication [18, 19]. The 

compressed sensing-speech coding scheme is utilized for 

mobile communications in [20] but it is more complicated 

even for speech signals. In [21], an efficient compressed 

image transmission scheme has been proposed for wireless 

networks based on orthogonal frequency division multiplexing 

(OFDM). However, this paper used the block compressed 

sensing method, which involves: block sparse chaotic DCT 

basis matrix and block chaotic DCT measurement matrix. In 

[16, 17], an efficient compressed image transmission scheme 

has been proposed for wireless networks based on OFDM 

which involves: a Hadamard sparse basis matrix partial DCT 

measurement matrix and 16-QAM-OFDM system with visible 

light communication (VLC) channel. A Gaussian random 

measurement matrix with a QAM-OFDM transmission system 

has been used in for efficient image transmission using CS. 

Therefore, we used error correction codes such as polar code 

[9] that give better performance. Polar code was recently used 

in 5G mobile phone systems [11, 13] to increase efficiency 

and reduce the latency during communication [13].In this 

manuscript, we have demonstrated that utilizing polar codes 

with successive cancellation (SC) decoding outperforms 

traditional error-correcting codes in the context of image 

communication. The primary objective of this paper is to 

assess the fidelity of grayscale images transmitted through a 

communication system. In this system, grayscale images are 

encoded using Polar codes and then transmitted over a 

multipath channel using OFDM modulation and SC decoding. 

This evaluation is conducted across a range of signal-to-noise 

ratio (Eb/N0) values from 0 dB to 5 dB, which correspond to 

low signal-to-noise ratios. This investigation is particularly 

significant as prior literature has not previously explored the 

performance of SC decoding at low signal-to-noise ratios in 

the context of image transmission with Polar codes. Recently, 

compressive sensing schemes have been used for the fifth-

generation system to handle the huge amount of generated 

data. Also, it gives better reliability for the reconstructed data. 

The aim of this paper is to be encoded by polar code for error 

correction of the compressed data before communication. 

Our contributions to this study are summarized as follows:  

 The primary objective of this research is to leverage 

the strengths of Compressed Sensing and Polar Coding 

to address the challenges posed by image 

communication in a Rayleigh fading channel.  By 

integrating CS for bandwidth-efficient image 

compression and Polar Codes for robust error 

correction, we aim to achieve high-quality image 

transmission even in scenarios characterized by 

significant channel fading. 

 Performance evaluation of Polar code for reliable 

transmission of compressed sensing images.  

 Transmission of a gray image encoded with polar code 

and decoded with successive cancellation (SC) 

decoder in the presence of a multipath fading channel.  

 Proposed a Compressive Sensing–Polar Code–

OFDM (CS-PC-OFDM) system model to improve the 

efficient and reliable communication of compressed 

image data. 

The following sections of this paper are organized in the 

following manner: Section II briefly covers compressed 

sensing and polar codes, including a mention of SC decoding 

and the methodology used in this investigation. Sections III, 

IV and V present Performance Parameters, results and 

conclusions, respectively. 

I. BACKGROUNDS OF COMPRESSED SENSING AND 

POLAR CODE 

A. Compressed Sensing 

Compressive sensing is a signal-processing scheme 

developed in 2006[1]. It reconstructs the sparse signal from a 

small set of linear measurements using a proper transform 

[18]. Let us consider a sparse signal in a time domain ψ with 

size N×1. The sparse signal, x can be expressed in terms of 

original signal, X as follows: 

 
x X 

, (1) 

where x is considered to be a Kth order sparse signal with size 

N×N if there are K (K ≪ M) nonzero elements in x. Suppose y 

is a measurement array with (M ≪ N) and can be expressed as  

 
y x 

, (2) 

where ϕ is a measurement matrix of size M×N. The 

measurement matrix ϕ can be constructed using a chaotic 

map, random Gaussian matrix, Bernoulli matrix, etc. In this 

paper, we have used Teoplitz diagonal measurement metrics 

to measure the signal. The perfect recovery of x from y 

requires two matrices ϕ and ψ to obey (a) the incoherence 

condition and (b) the restricted isometry property. Teoplitz 

diagonal measurement matrix satisfy these two conditions. In 
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this work, we have used the conventional orthogonal 

matching pursuit (OMP) algorithm for efficient and reliable 

reconstruction of the signal. The proposed Teoplitz diagonal 

measurement matrix (TDM) is based on the Toeplitz matrix 

that only keeps the entities in a diagonal line set as ’1’. The 

construction of TDM is exposed with equation (3). 

 

,

1,     

1,     for 1 or 1  or 

0,    Otherwise 
i j

 

 i j i j    


 , (3) 

where 
,  

,
(1, ), j (1, ).

M N

i j
R i M N


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 This is the 

proposed TDM measurement matrix. 
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      Algorithm1: Modified Compressive Sensing based on  

                  Toeplitz Diagonal Measurement Matrix 

 
              Input:  Input Signal measurement ϕ of  

                 Matrix size M×N (M<<N)  

   Output: Recovered sparse signal x’ 

        1.  Initialize: 

             -Set iteration count i = 1 

               -Set measurement y as an empty array 

      2.     Sparse representation 

                        a.Generate sparse signal using   

 

                DWT basis transform: 

              b.Compute measurement y: 

                   -Multiply the sensing matrix ϕ by the signal    

              x: y = ϕ.x 

            c.Update the measurement y: 

                -Concatenate the measurement 

                yi to the existing measurement y   

                d.Increment the iteration 

                  count i=i+1   

          3. Perform sparse recovery: 

                    a.Solve the optimization problem  

               to recover the sparse signal x’: 

                  -Minimize x′ subject to y = ϕ.x’ 

                b.Obtain the recovered sparse signal x’ 

  

 

B. Polar Code 

In this section, the encoding and decoding process of polar 

code has been explained over the multi-path fading channel. 

B.1 Encoding 

   The encoding process includes the redundant indices 

selection, assigning frozen bits to those redundancies 

according to worst-to-best channel condition, and then 

performing a polar transform on those bits. Now, a kernel for 

the polar transform is considered as shown in Figure 1.  

 

 
 

Fig. 1. Binary tree representation of a 2x2 kernel of polar transform 

 

Here the input is u = [u1u2] and the polar transform out- put 

is v = [v1v2]. This is sent through a multipath fading channel. 

Where v1 and v2 are equal to u1⊕u2 and u2 respectively. So the 

binary tree for a polar code having N = 8 will look like the 

diagram given next. The binary tree is used for encoding and 

decoding an (8,4) polar code as shown in Figure 2, where the 

coded block length, N is 8 and the data block length, K is 4. 

The darkened nodes show the frozen positions where the 

redundant bits are added. It can be seen that the tree has log2 

(N) + 1 depth. It saves the last depth or the leaf nodes and at 

every depth the modulo addition is carried out on N bits while 

encoding. The complexity order can be expressed as O 

(Nlog2N). Encoding starts at the last depth of the tree. During 

the decoding, the vector received after demodulation is 

supplied to the topmost node of the tree after which they are 

sliced into half at every successive node and then processed 

till the last leaf node is reached where the decision is taken 

based on a single bit. The details of the polar code and 

successive cancellation decoding have been discussed in the 

following section.  

 

Fig. 2. Binary tree for N = 8, K = 4 

B.1.1 Polar Encoding 

The encoding process begins by selecting the redundant 

indices, assigning frozen bits to those redundancies, and 

applying a polar transform to those bits. Let K denote the 

number of data bits to be encoded. The data vector is denoted 

by u1×K = [u1u2......uK]. Initially, we determine the block length 

N based on the desired code rate (K/N). Subsequently, a 

reliability sequence is generated for N split channels, 

organised from worst to best reliability indices. Upon 

generating the sequence, the first (N-K) indices mentioned in 
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the reliability sequence are designated as frozen positions. 

These indices are then populated with fixed or dynamically 

generated frozen symbols. In this case, we've chosen the 

frozen symbols to be fixed, namely 0. Let the resulting vector 

be represented as: 

 

Fig. 3. A N = 8, K = 4 polar encoder where the frozen positions are 

given by F = (1, 2, 3, 5) 

 

c1×N = [0 0 0 u1 0  u2......uK The elements of this vector 

undergo iterative channel recombination multiple times, as 

described previously. This process can be essentially 

summarised by the expression: 2
nV cG 

as mentioned in the 

previous sections. It is to be noted that v is of the same size 

(1×N) as c. The vector v is then modulated with binary phase 

shift keying (BPSK) modulation and transmitted over the 

channel. In Figure 3 we see the example where the 2×2 kernel 

has been used as the elementary node for constructing the (8, 

4) polar code encoder structure. Here ui, where i (1, K), are the 

data bits. The frozen bits are set to 0 here and the indices 

correspond to the 4 split channels with the lowest capacities. 

If two channels have the same capacity they are indexed in 

their natural order. 

B.2. Successive Cancellation Decoding for Polar Codes   

The decoding of polar codes follows the ideology behind 

the single parity check (SPC) code and the soft-in-soft-out 

(SISO) decoder. In the SPC encoder, the parity bit is set by 

taking the XOR of all the input bits. The SISO decoder 

decodes this code by calculating by log –the likelihood ratios 

(LLRs) of the code alphabets concerning the received data 

from the channel. Using this basic principle, Arikan proposed 

the SC decoder to decode polar codes [9]. It operates 

sequentially, i.e., the first bit is decoded with the received 

values from the channel while the subsequent bits are decoded 

with both the information received from the channel and the 

decisions taken about the previous bits. It treats every 

subsequent bit like a parity bit generated from the previous 

bits, following the concept of channel splitting. In addition to 

this, the decoder has the knowledge of the frozen indices, so 

the errors occurring while decoding the frozen bits are caught 

and then used to cancel out the errors occurring during the 

decoding of the other bits, hence its name, successive 

cancellation. In this section we will see the performance of the 

SC decoder, the addition of list decoding via a CRC check to 

the SC decoder proposed by Tal and Vardi in [11], and the 

resulting improvement over the SC decoder offered by this 

modification. We've employed the simplified binary tree 

method for developing the SC decoding algorithm. The 

received channel values are first converted to channel beliefs 

by: 

 
2

2 i
i

y
L 


. (4) 

This vector l= [ l1 l2 l3.... lN ] is subsequently fed as input to 

the uppermost node. This vector is then split in half, yielding 

al and bl, each with sizes of 1×N/2. Next, a bitwise operation 

is conducted on these vectors. 

     
,

, ,
,

i i
i i i i

i i

a b
f a b min a b

a b
 .  (5) 

The resultant 1×N/2 sized vector is subsequently 

transmitted to the right child. This procedure of splitting and 

executing operation (6) is reiterated until reaching the 

terminal node of the tree, where the sizes of vector al and bl 

become 1×1. At this leaf node, the estimation of the bit ui is 

computed according to the sign of the LLR (Log-Likelihood 

Ratio) value received from the parent node. 

  
0,     for 

1,     for < 0 

0,    for 0 
i

i

i f  

f x  a

a 










  (6) 

Afterward, f represents the sequence of frozen indices. 

Upon completion, the decision made by the node is passed to 

its parent node. This parent node conducts LLR calculation 

using: 

   2 ˆ, 1i i i ii
g a b b u a 

  
 

  . (7) 

This calculated value is subsequently sent to the left child 

of the node. If the left child is a leaf node, it decides on the bit 

based on the sign of the calculated value, denoted as uˆ2, in 

the equation (5). This decision is then relayed to the parent 

node, which executes a polar transform on uˆ1 and uˆ2 and 

forwards the decision to its parent node. This recursive 

process continues until the decoding of the very last bit. These 

functions are simplified approximate forms of the rigorous 

probability domain calculation of LLRs based on the 

conditional probability of the alphabet symbols, given the 

channel outputs and the previously decoded bits. This 

simplification is possible due to the binary nature of the code 

symbols. Figure 4 is the diagrammatic representation of a 2×2 

kernel of the SC decoder in simplified binary tree form. From 

equation (6) LLR-based Binary Phase Shift Keying (BPSK) 

decoding utilizes Log-Likelihood Ratios (LLRs) to make 

decisions about the transmitted bits. In BPSK, each 

transmitted bit is represented by a specific phase of the carrier 

signal. During decoding, the receiver needs to determine 

which bit was sent based on the received signal. The LLR is a 

measure of how likely it is that a particular bit was 

transmitted, given the received signal. In LLR-based 
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decoding, the LLR value associated with each bit position 

(index) is calculated based on the received signal and the 

known properties of the modulation scheme. The ith index 

( ia
) refers to the LLR associated with the ith bit position. 

This value is used in the decoding process to determine the 

most likely bit value for that position. Since the LLR values 

are calculated based on the received signal, the decoding 

process inherently depends on the characteristics of the 

received data. Different received signals will result in 

different LLR values, leading to potentially different decisions 

about the transmitted bits. Therefore, LLR-based BPSK 

decoding adapts to variations in the received data, making it 

dependent on the specific data being received. 

 

Fig. 4. 2x2 kernel of the successive cancellation decoder showing the 

node functions and the directions in which the decisions of the node 

operations are sent 

B3. CS-PC-OFDM Model 

  In this section, we have proposed the Compressive 

Sensing–Polar Code–OFDM (CS-PC-OFDM) system model 

to improve the efficient and reliable communication of 

compressed image data. In communication, data suffer from 

inter-symbol interference (ISI) and signal attenuation due to 

the multi-path fading channel. In this manuscript, the multi-

path fading channel is used which has several signal paths. 

The multi-path fading channel is recognized as the worst 

channel [23, 24]. Here the signal power changes by the 

Rayleigh distribution. It works best in situations where, there 

is no dominant signal (direct line of sight signal). To reduce 

the channel impact, proper channel compensation schemes are 

chosen. So, a detailed block diagram of compressed image 

communication using a polar-coded CS- OFDM model is 

shown in Figure 6. This model allows us to perform signal 

acquisition and compression to reduce networks loading by 

using CS Compressive Sensing with polar code in wireless 

networks simultaneously.  

The proposed model consists of compressive sensing as a 

source coding, polar code as a channel encoding, and 

orthogonal frequency division multiplexing (OFDM)as a 

modulator. Polar code is a network encoding method used to 

reduce the transmission error rate. It works by adding extra 

digits to information that is transmitted to enable error 

detection and correction by the recipient. A polar encode with 

a code rate of K/N has N output bits and K input bits. The 

successive cancellation decoder is used to decode the polar 

codes. Inter symbol interference (ISI) and signal attenuation 

are the major problems for signal communications through 

multipath channels [25–27]. To overcome these effects the 

OFDM is used.  It is a multicarrier modulation technique used 

in several OFDM (CS-PC- OFDM) system models to improve 

the efficient and reliable communication of compressed image 

data. In communication, data suffer from inter-symbol 

interference (ISI) and signal attenuation due to the multi-path 

fading channel. In this manuscript, the multi-path fading 

channel is used which has several signal paths. The multi-path 

fading channel is recognized as the worst channel [28]. Here 

the signal power changes by the Rayleigh distribution. It 

works best in situations where there is no dominant signal 

(direct line of sight signal). To reduce the channel impact, 

proper channel compensation schemes are chosen. So, a 

detailed block diagram of compressed image communication 

using a polar-coded CS- OFDM model is shown in Figure 6. 

This model allows us to perform signal acquisition and 

compression to reduce network loading by using CS 

Compressive Sensing with polar code in wireless networks 

simultaneously. The proposed model consists of compressive 

sensing as a source coding, polar code as a channel encoding, 

and orthogonal communication standards to avoid the impact 

of multipath fading and to ensure reliable communication at 

high data rates [21]. It improves the results by using different 

weighting factors depending on signal-to-noise ratios (SNR). 

The inverse operations are performed in OFDM demodulation 

as it is used in the transmission side. 

   
TABLE 1 

SIMULATION PARAMETER 

S.No Parameter Details 

1. Input image Lena, Barbara, Boat, 

peppers, and Cameraman 

2. Sparse basis 

Transform 

DWT 

3. Measurement 

matrix 

Toeplitz Diagonal 

measurement 

4. Polar code 

parameter 

(8, 4) and (1024, 512) 

5. Channel coding 1/2 polar code 

6. Channel 

decoding 

SC decoding 

7. Channel 

mode 

Rayleigh fading channel 

8. Number of 

paths nTaps 

3 

9. Reconstruction 

method 

Orthogonal Matching Pursuit 

Successive cancellation decoding and the orthogonal 

matching pursuit are used to reconstruct the signal at the 

receiver side. Table 1 presents the simulation parameters used 

during the simulation.  

C. Communication System Description 

A block diagram for the proposed model has been shown in 

Fig. 5. The system parameters used in the CS-PC-OFDM 

model are tabulated in Table 1. Currently, five different types 

of input images of size 256×256 have been taken for 

multipath propagation. These images are Lena, Boats, 

Peppers, and Cameraman. To begin, these images undergo 

compression through a compressed Sensing scheme. 
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Fig. 5. Block diagram of compressed image communication using a 

polar-coded CS-OFDM system 

 

Subsequently, the compressed data is subjected to polar 

encoding before being processed through an OFDM 

modulator and transmitted across a multipath fading channel. 

Upon reception, the images are subjected to an OFDM 

demodulator before decoding via the respective SC decoder. 

The quality of the reconstructed images is then assessed using 

four distinct image quality evaluation metrics: peak signal-to-

noise ratio, NPCR, UACI, and structural similarity (SSIM). 

PSNR, NPCR, and UACI evaluate the discrepancy in 

luminance values between corresponding pixel coefficients in 

the original and reconstructed images, providing an indication 

of image quality. However, it’s important to note that PSNR is 

not considered a metric that aligns with human visual 

perception [21]. Therefore, another metric, SSIM, which relies 

on the structural vector components of the image, is also 

employed. These additional metric accounts for the visual 

quality of the received image. This comprehensive approach 

enables a more meaningful investigation of image 

transmission. The formulas for PSNR, NPCR, UACI, and 

SSIM are given by equations 10, 11, 12, and 13, respectively. 

II. PERFORMANCE PARAMETER 

A new design for signal coding based on the combination of 

CS and OFDM is proposed to be used in communications. It 

is integrated into an end-to-end communication system. The 

Following are the performance measures that are used in this 

paper. 

Compression Ratio: In our work, the five test images Lena, 

Barbara, Boat, peppers, and Cameraman images are used. The 

test image is first converted into a sparse signal on a DWT 

sparse basis. The obtained sparse signal is measured by a 

Toeplitz-Diagonal measurement matrix. Then encoded by 

polar code and then transmitted to the channel. And at the 

receiver, SC decoding is used to remove the error of the 

channel. A conventional OMP reconstruction algorithm is 

employed to reconstruct the signal. The simulation results are 

obtained using MATLAB. The compressive sensing schemes 

are performed based on the different compression ratios (CR). 

The compression ratio is defined [22–24] as 

 
M

CR
N

 , (8) 

where M and N are the lengths of the observation vector and 

the input signal, respectively. From this formula, lower CR 

means higher compression. 

Mean square error and Peak to signal noise ratio: 

The Peak signal-to-noise ratio (PSNR) and mean square 

error (MSE) are defined as follows [14]: 

     
1 1

2

0 0

1
, ,

r c

i j

MSE X i j x i j
rc

 

 

    , (9) 

where r and c denote the image row and column, respectively. 

X (i,j) and x(i,j) show the gray values of the reconstructed and 

the original images, respectively. The high value of PSNR 

represents the better quality of the reconstructed image. The 

Peak Signal-to-Noise Ratio (PSNR) is defined as follows [14]: 

 
2255

(dB) 10logPSNR
MSE

 . (10) 

NPCR and UACI: These parameters also aim to exploit the 

vulnerabilities in the reconstruction scheme by analysing the 

differences between two versions of the same image, typically 

an original image and a reconstructed image. It tries to deduce 

information about the reconstruction process by analysing the 

changes in the pixel values between the two images. It is 

called a differential attack. NPCR (number of pixels change 

rate) and UACI (unified average changing intensity) usually 

are used to examine the performance of resisting differential 

attack. NPCR and UACI are two commonly used parameters 

to measure the resistance of a reconstruction scheme against 

differential attacks. NPCR measures the percentage of pixels 

that differ between the original and reconstruction images. It 

provides an indication of the change introduced by the 

reconstruction process. The higher the NPCR value, the more 

effective the scheme is in altering the pixel values. A higher 

NPCR value, closer to 100%, indicates a higher level of pixel 

alteration and suggests a better resistance against differential 

attacks. UACI measures the average difference in intensity 

between corresponding pixels in the original and 

reconstruction images. It quantifies the average impact of the 

reconstruction process on the pixel values. UACI is typically 

reported as a value between 0 and 1. A lower UACI value 

suggests a smaller average change in pixel intensity and 

indicates a better resistance against differential attacks. NPCR 

and UACI are calculated as follows: Let us consider images X 

(i, j) and x (i, j), and their corresponding original images differ 

only by one pixel. Let X (i, j) and x (i, j) be the pixel values at 

the location (i, j) of X and x, respectively. Now, we construct a 

bipolar array D with elements 0 or 1 using the equation (11). 

The dimension of D is the same as the dimensions of X and x. 

The NPCR and UACI are computed by applying the following 

formulas. 
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  
   1,  if , ,

,
0,  otherwise

X i j x i j
D i j

 
 


, (11) 

 
,

,

i j

i j

D

NPCR
rc




, (12) 

 

    
,

, ,
1

255

i j

X i j x i j

UACI
rc

  



. (13) 

Both NPCR and UACI provide quantitative measures to 

evaluate the effectiveness of reconstruction against 

differential attacks. Higher NPCR values and lower UACI 

values indicate stronger resistance to such attacks. 

III. RESULT AND DISCUSSION 

In this section, we illustrate some results of our proposed 

model to show the ability of the compressed sensing method 

and consequently its effect on the reconstruction process in 

wireless communication with multipath fading channels. The 

proposed model used a Rayleigh fading channel for 

transmitting the data but this is a worse-case scenario. After 

the compressive sensing source coding at the side of the 

transmitter, polar encoding is used to increase the robustness 

against channel induced errors and OFDM modulation is 

performed to enhance the efficiency and also the immunity 

against ISI caused by the channel. At the receiver side, the 

OFDM demodulation, followed by SC channel decoding is 

performed. In the beginning, we carried out an experiment by 

taking five test images, namely Cameramen, Lena, Barbara 

Boat, and Peppers for end-to-end communication with an 

error correcting polar code in the end-to-end transmission 

scheme for SNR=5dB. The reconstruction quality is measured 

by different parameters like the Peak Signal to Noise Ratio 

(PSNR), NPCR, MSE, and SSIM between the reconstructed 

image and the original image. The relative various 

performance analyses are present in this manuscript. We 

evaluate the system performance through subjective 

visualization of received images, along with measurements of 

bit error rate (BER) and PSNR. During simulation, the image 

in the sparse domain is sampled using time-division 

multiplexing (TDM) measurement matrices.  

Orthogonal Matching Pursuit (OMP) algorithm is 

employed as the reconstruction method. Figure 6 depicts the 

reconstruction results of a different image, demonstrating the 

PSNR. Figure 6 show that Lena's reconstructed images get 

better performance than the others. And also shows a high 

compression ratio that is 0.4 we get a minimum PSNR of 

28.1472dB with the Boat image and a maximum PSNR of 

32.9285 dB with the Lena image. A higher PSNR value 

indicates a better reconstruction quality, as it implies a smaller 

amount of distortion or noise in the reconstructed signal. 

Figure 8 shows the comparison of mean square error (MSE) 

between five test images with the proposed errors correcting 

polar code with compressed sensing in the communications 

field. The proposed scheme achieves more accurate results in 

the reduction of MSE. Here, smaller values of MSE indicate a 

more accurate result and thus give a better quality of the 

reconstructed image. The Number of Pixels Change rates 

(NPCR) and the Unified Average Changing Intensity (UACI) 

were employed as a tool to judge the differences between 

images. 

 

Fig. 6. Comparison of reconstruction performance  

(PSNR) versus different compression rates 

 
 

 

Fig. 7. Comparison of reconstruction MSE of different test images 

with different sampling rates 

 

 Fig. 8. Results of reconstruction NPCR of different test images with 

different sampling rates 
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Fig. 9 Results of reconstruction UACI of different test images with 

different sampling rates 

 
These two indicators are exploited to directly illustrate the 

changes between the reconstructed images and the test 

images. Figure 8 and Figure 9 show the NPCR and UACI 

results of the reconstructed images after communications, 

which decrease the NPCR and UACI values by decreasing the 

compression data rate. Figure 8 shows the NPCR results of the 

reconstructed images after communications. A higher NPCR 

value suggests that a larger percentage of pixels have changed 

between the original and reconstructed images. This indicates 

that the reconstruction process has introduced significant 

alterations to the pixel values, making it more challenging for 

an attacker to infer information about the original image from 

the reconstructed one. Therefore, if a higher NPCR value 

indicates better resistance against differential attacks, it means 

that the reconstruction algorithm is effectively altering a 

larger portion of the image, making it harder for attackers to 

exploit the differences between the original and reconstructed 

images to gather information about the reconstruction process. 

Figure 9 shows the UACI results of the reconstructed images 

after communications, which decrease UACI values by 

decreasing the compression data rate. And the reducing the 

compression data rate, the quality of the reconstructed images 

improves, as indicated by a decrease in UACI values. This 

aligns with the intuition that less aggressive compression 

preserves more image details, resulting in higher-quality 

reconstructed images. The performance of the polar code is 

shown in Fig. 10. The performance of the reconstructed image 

quality is good when the block length is increasing. The polar 

code with column weight two over GF (2) with N = 8 with K 

= 4 can maintain a better quality of the received image at a 

low SNR of 3.8dB. In this paper, image transmission is 

implemented using error-correcting polar code. The different 

standard images are tested as the original images, as shown in 

Fig. 10. PSNR of the proposed method can improve the 

performance of the received image at low SNR 3.8dB. Figure 

11 shows the effects of different CR on SSIM values. The 

SSIM values are also decreasing with CRs, according to the 

results higher SSIM is consistent with a higher compression 

ratio. This figure also shows that the Lena image has better 

SSIM value performance (which should be 1 ideally) as 

compared to others. It means that our scheme also has very 

good compression recovery performance. We can see that the 

Boat image per form is the worst among the compared 

samples, more so at lower compression ratios. 

 
                                     TABLE 2 

COMPARES THE PERFORMANCE OF DIFFERENT TEST IMAGES BASED ON 

CHANNEL AND WITHOUT CHANNEL. ALSO, IT COMPARES THE 

PERFORMANCE OF ERROR CORRECTING CODE BASED ON THE 

CONVOLUTION CODE AND POLAR CODE AT SNR =5dB AND CR=0.75 

 

 

Table 2 compares the performance of different test images 

based on channel and without channel (both coded and 

uncoded cases). Also, it compares the performance of error- 

correcting code based on the convolution code and our 

proposed polar code. The performance of the different test 

images has different reconstructed image quality. 

 

Fig. 10. PSNR performance comparison of different images over the 

multipath fading 

The com-pressed sensing source coding method has been 

implemented without transmitting over a channel and that 

performance has been compared against the scenario when the 

image data is transmitted over a channel with OFDM 

modulation. 

 

Fig. 11. Effect of compressive ratio on SSIM performance over the 

multipath fading channel 

 

Image 

no 

Image 

(256x256) 

PSNR 

without 

channel 
error 

PSNR with 

channel 

error but 
without 

channel 

coding 

PSNR 

with 

Convolutio
nal code 

PSNR 

with the 

proposed 
Polar code 

1. Cameramn 33.3309 5.2115 12.7689 31.052 

2. Lena 39.1142 6.5210 16.2311 39.289 

3. Barbara 33.0623 11.1831 16.1894 33.130 

4. Boats 32.7802 9.3186 9.0565 32.634 

5. Peppers. 40.0012 7.4273 15.0288 36.389 
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When it is passed through the multipath fading channel at 

signal to noise ratio of 5 dB without any error correcting code 

it is concluded that is then we found the worst result of the 

reconstructed image shown in Table 2. After that, we applied 

the convolution error correcting but we got a little better 

performance with this code. And when we used our proposed 

error-correcting code we got the best quality of the 

reconstructed image at low SNR=5dB. The visual inspection 

of the quality of the reconstructed images can be used to 

understand more clearly the effect of changing the SNR on the 

PSNR measurement metric, by taking the example of the 

image ‘Peppers’. It can be seen that the reconstruction 

algorithm’s performance worsens with lower SNR as can be 

logically concluded. We can visually perceive the effect a bad 

channel has on the communication of an image, with both the 

channel error control decoding and the reconstruction 

algorithm applied losing more information with worsening 

channel conditions. We can see that we can get a decent 

PSNR value of 33.97 and a well-reconstructed image at just a 

low SNR at just (3.5-4 dB). 

TABLE 3 

PNSR VALUE FOR A RANGE OF SNR VALUES AND POLAR CODES  

(1024, 512) FOR THE PEPPERS IMAGE 

Method SNR 

(dB) 

0 0.4 0.8 1.2 1.6 2 

Compressed 
image 

transmission 

with polar 
code 

(Proposed) 

PSNR 
(dB) 

 

 
 

16.7889 30.6711 36.3809 40.3436 40.3436 40.3436 

Image 
transmission 

with polar 

code[Ref.12] 

PSNR 
(dB) 

7.90 8.42 10.05 13.23 17.48 22.30 

  
Tables 3 and 4 are utilized to compare the reconstructed 

image quality of a test image, measured through PSNR.These 

tables allow for an assessment of performance based on 

varying Signal-to-Noise Ratio (SNR) levels and polar codes. 

By examining the data in these tables, it's possible to identify 

the combination of SNR and polar code that yields the highest 

image quality, thus determining superior performance 

compared to a provided reference standard. Figure 14 

demonstrates the performance of the applied scheme of 

implementing polar code for a multipath fading channel with 

compressed sensing used for source coding. This simulation 

shows the performance of the applied model when the 

candidate image is changed. The compression ratio is fixed at 

0.75, along with the code rate being fixed at 0.5. The number 

of significant signals paths (channel taps) is considered to be 

3. The inference can be drawn from the above figure that the 

image over which the scheme is applied has no evident effect 

on the BER performance metric.  This is intuitive as the 

nature of the source data should not affect the bit-error rate as 

that is only dependent on the channel coding and modulation 

models implemented. This is however not true for the PSNR 

metric of source coding (compressive- sensing) scheme 

applied, as has been observed before. We can see the 

impressive performance of the scheme of applying polar 

codes along with channel transformation. 

                                       TABLE 4 

PNSR VALUE FOR A RANGE OF SNR VALUES AND POLAR CODES  

(1024, 512) FOR THE LENA IMAGE 

Method SNR 

(dB) 

0 0.4 0.8 1.2 1.6 2 

Compressed 

image 

transmission 

with polar 

code 

(Proposed) 

PSNR 

(dB) 

 

15.79 37.11 39.11 39.11 39.11 39.11 

Image 

transmission 

with polar 

code 

[Ref.12] 

PSNR 

(dB) 

9.50 10.34 11.22 14.72 18.84 23.02 

 

Bit-error rates of 10-5 can be achieved at signal-to-noise 

ratio in the range (3.5-4). This can be extrapolated from the 

slope of the curve so that we can achieve BER of the order of 

10-9 for SNR in the range (4.5-5 dB). In Table 5, the 

performance of reconstructed images using a combination of 

Compressed Sensing (CS) and polar codes over a fading 

communication channel is evaluated. The signal-to-noise ratio 

(SNR) for this evaluation is set at 3.8 dB, and the compression 

ratio (CR) is 0.75. The results indicate that using polar codes 

in conjunction with Compressed Sensing improves the 

performance of the system compared to not using polar codes. 

Among the reconstructed images, the one corresponding to the 

“peppers” image achieved the highest Peak signal-to-noise 

ratio  (PSNR)  value of 40.3324 dB This PSNR value is 

indicative of high image quality and fidelity. The Structural 

Similarity Index (SSIM) value for the same “peppers” image 

is reported as 0.9811. SSIM values closer to 1 indicate that the 

reconstructed image closely resembles the original image in 

terms of structural details, contrast, and texture. These results 

suggest that when using Compressed Sensing with polar codes 

over a fading channel, the “peppers” image reconstruction 

stands out as having the highest image quality, as evidenced 

by its high PSNR and SSIM values. This demonstrates the 

effectiveness of polar codes in enhancing the reliability of the 

communication system and the quality of the reconstructed 

images. This study suggests that using polar codes in 

conjunction with compressed sensing improves the quality 

and reliability of reconstructed images over a fading 

communication channel, as evidenced by the higher PSNR 

and SSIM values, along with lower BER values. Figure 13 

presents the performance comparison of using polar codes in 

conjunction with compressed sensing data over a multipath 

fading channel. In this evaluation, the performance of the 

system with polar codes is compared to the performance 

without polar codes. 

The main result from Fig. 13 is that using polar codes 

significantly improves system performance in the context of 

compressed sensing over a multipath fading channel. This 

improvement can be attributed to the error-correction 

capabilities of polar codes, which effectively mitigate the 

adverse effects of signal fading, interference, and reflections 

associated with multipath channels. 
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TABLE 5 

COMPARISON OF PSNR (dB), SSIM AND BER VALUES FOR DIFFERENT RECONSTRUCTED IMAGES USING COMPRESSED SENSING WITH POLAR CODE 

OVER A FADING CHANNEL WITH SNR=3.8 AND CR=0.75. 
 

 

The use of polar codes enhances the system ability to 

recover data accurately, making it more resilient to 

communication challenges. This is especially valuable in 

scenarios where maintaining data integrity and signal quality 

is crucial, such as wireless communications, image 

transmission, or any application that involves transmitting 

data over unreliable channels. 

 

Fig. 12. Visual comparison of the reconstruction quality of the 

Peppers image for different SNR values 

Figure 14 presents the Bit Error Rate (BER) performance of 

a communication system using polar codes in conjunction 

with compressed sensing data over a multi-path fading 

channel.  It also offers a direct comparison between the BER 

performance when polar codes are employed and when they 

are not used in the context of compressed sensing over the 

same multi-path fading channel. The primary outcome 

depicted in Figure 14 is that utilizing polar codes leads to a 

substantial improvement in BER performance. Specifically, 

the BER is significantly lower when polar codes are integrated 

into the system compared to scenarios where polar codes are 

not utilized. Signifies that data transmission is more accurate 

and reliable. The multi-path fading channel introduces signal 

variations, making data transmission challenging due to 

interference and signal reflections. However, the presence of 

polar codes enhances the system’s resilience in this 

challenging environment, resulting in fewer bit errors and 

more precise data recovery. This result has significant 

practical implications, particularly in wireless communication 

systems, where reliable data transmission is critical. It 

demonstrates that by employing polar codes in combination 

with compressed sensing, a communication system can 

achieve superior performance in terms of error correction and 

data recovery, even when confronted with adverse conditions 

like multipath fading.  

 

Fig. 13. PSNR performance comparison of different images over the 

multipath fading channel 

In essence, Fig. 15 highlights the effectiveness of polar 

codes in enhancing the robustness and reliability of data 

transmission over multipath fading channels.  The result 

provides insights about SSIM performance when employing 

polar codes in conjunction with compressed sensing data over 

a multi-path fading channel. Additionally, it offers a direct 

comparison of SSIM performance when polar codes are 

utilized versus when they are not employed in the context      

of compressed sensing over the same multi-path fading 

channel. 

Error Correction  Without polar code with CR=0.75 With polar code with CR=0.75 

Parameters  PSNR (dB) SSIM BER PSNR (dB) SSIM BER 

 T
es

t 

Im
ag

es
 

Cameraman 27.2178 0.6952 0.0251 33.3205 0.9384 4.2385e-06 

Lena 24.4811 0.9245 0.5431e-06 39.1124 0.9796 8.4771e-07 

Peppers 27.9057 0.9492 6.2165e-06 40.3324 0.9811 2.2606e-06 

Barbara 33.0612 0.9430 4.7641e-04 35.1594 0.9586 4.52177e-06 
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Fig. 14. BER performance comparison of different images over the 

multi-path fading channel. 

 

 

Fig.15. SSIM performance comparison of different images over the 

multipath fading channel 

 

The key finding from Fig. 15 is that the use of polar codes 

yields significantly better SSIM performance. SSIM is a 

metric that measures the structural similarity between the 

original and reconstructed images, with a value of 1 indicating 

perfect similarity. In practical terms, the enhanced SSIM 

performance demonstrates that polar codes are effective in 

improving the quality of reconstructed images in the presence 

of multi-path fading. Multi-path fading introduces challenges 

such as signal degradation and interference, which can lead to 

distortions in images during transmission. However, the 

incorporation of polar codes helps mitigate these challenges, 

resulting in images that closely resemble their originals. This 

result has significance in applications where maintaining the 

integrity and quality of images or data is critical, such as 

medical imaging, video transmission, or remote sensing. By 

utilizing polar codes in combination with compressed sensing, 

the system can achieve better image fidelity and structural 

similarity, even under adverse conditions like multi-path 

fading. In summary, Figure 15 underscores the effectiveness 

of polar codes in enhancing the quality of reconstructed 

images in the context of compressed sensing over multi-path 

fading channels. 

 

V. CONCLUSIONS 

In this paper, we have proposed an efficient model based on 

compressive sensing, OFDM, and polar code with successive 

cancellation decoding to communicate the compressed data 

through wireless networks. A performance evaluation has 

been conducted for the proposed model over the multi-path 

fading channels. It is evaluated by communicating the 

compressed data using BPSK modulation over OFDM system 

with polar codes. A performance comparison of polar code 

with normal convolutional code has been also presented in the 

paper under the same scenario. The investigated results show 

that the performance of the polar codes is superior to the 

performance of convolutional codes in terms of the visual 

quality of received images and the bit error rate. In this paper, 

we have also laid out a detailed justification of our proposed 

model. The graphical analysis shows that compressed sensing 

signal communication with polar codes is an excellent 

candidate for reliable and efficient communication of the 

compressed data in wireless networks over the multipath 

fading channel at very low SNR=3.6dB. It is concluded that 

comparatively compressive sensing based on polar codes is a 

good selection for wireless image communication.  

ACKNOWLEDGMENTS 

This work was sponsored by IDEAS, Technology 

Innovation Hub@ Indian Statistical Institute under 

Development of Data Science method for Cyber Physical 

system, DRIE/RDC/NM-ICPS/ISI Kolkata/2022-23/9483.  

REFERENCES 

[1] F. C. Abdennour, B. A. Riad and R. Mehdi, “High-Capacity 

Transmission with Dual Polarization M-QAM Levels Based on 

DWDM Technique for Wireless Networks.” in Microwave 

Review, vol. 29, no. 1, 2023, ISSN 2406-1050 

[2] B. Anes, B. A. Riad, “Filterless Photonic Millimeter Wave 

Generation and Data Transmission for 5G Indoor Wireless 

Access.” In Microwave Review, vol. 28, no. 1, 2022,  

ISSN 14505835 

[3] T. Hemalatha and B. Roy, “A Comparative Study on Efficient 

MIMO Antennas in Wireless Communication,” in Microwave 

Review vol. 29, no. 1, 2023, ISSN 2406-1050 

[4] E. J. Candes and M. B. Wakin, “An Introduction to 

Compressive Sampling,” in IEEE Signal Processing Magazine, 

vol. 25, no. 2, pp. 21-30, March 2008,  

DOI: 10.1109/MSP.2007.914731 

[5] T. Arildsen, T. Larsen, “Compressed Sensing with a Linear 

Correlation Between Signal and Measurement Noise”, in Signal 

Process, vol. 98, 275–283, 2014,  

DOI: 10.1016/j.sigpro.2013.10.021 

[6] M. Rani, S. B. Dhok, R. B. Deshmukh, “A Systematic Review 

of Compressive Sensing: Concepts, Implementations and 

Applications”, in IEEE Access, vol. 6, pp. 4875–4894, 2018, 

DOI: 10.1109/ACCESS.2018.2793851 

[7] W. B. Pennebaker and J. L. Mitchell, JPEG Still Image Data 

Compression Standard, Kluwer Academic Publishers: Norwell, 

MA, USA, 1992.  

[8] H. C. Huang and F.C. Chang, “Error Resilience for Compressed 

Sensing with Multiple Channel Transmission,” in Journal of 

Information Hiding and Multimedia Signal Processing, vol. 6, 

no. 5, pp. 847–856, Sep. 2015, ISSN 2073-4212 



 

 

Mikrotalasna revija Decembar 2024 

14 

[9] E. Arikan, “Channel Polarization: A Method for Constructing 

Capacity-Achieving Codes for Symmetric Binary-Input 

Memoryless Channels,” in IEEE Trans. Information Theory, 

vol. 55, no. 7, pp. 3051–3073, July 2009,  

DOI: 10.1109/TIT.2009.2021379 

[10] H. Haneche, A. Ouahabi and B. Boudraa, “Compressed 

Sensing-Speech Coding Scheme for Mobile Communications,” 

in Circuits, Systems, and Signal Processing, vol. 40, issue 10, 

pp. 5106-5126, 2021, DOI: 10.1007/s00034-021-01712-x 

[11]  F. Z. Moussa, F. Souheyla and Y. Belhadef, “New Design of 

Metamaterial Miniature Patch Antenna with DGS for 5G 

Mobile Communications,” in Microwave Review, vol. 28, no. 2 

2022, ISSN 2406-1050 

[12] A. M. A. Garcia, M. Alcoforado, F. Madeiro and V. C. Rocha, 

“Improving Image Transmission by Using Polar Codes and 

Successive Cancellation List Decoding,” in Annals of Disaster 

Risk Sciences: ADRS 3.1, 2020,  

DOI: 10.51381/ADRS.V3I1.41 

[13] R. Gallager, “Low-Density Parity-Check Codes,” in IRE 

Transactions on Information Theory, vol. 8, pp. 21-28, 1962, 

DOI: 10.1109/TIT.1962.1057683  

[14] A. Mishra, K. Sharma and A. De, “Quality Image Transmission 

Through AWGN Channel Using Polar Codes,” in International 

Journal of Computer Science and Telecommunications,  

vol. 5.1, pp. 8-16, 2014, ISSN 2047-3338  

[15] H.-C. Huang, F.-C. Chang, T.-K. Huang, P.-L. Chen, “Error 

Control for Compressed Sensing Transmission with Polar 

Codes,” 2019 IEEE 1st Global Conference on Life Sciences and 

Technologies (LifeTech), Osaka, Japan, 2019,  

DOI: 10.1109/LifeTech.2019.8883985 

[16] G. L. Stüber, Principles of Mobile Communication, vol. 2, 

Boston: Kluwer Academic, 2001. 

[17] H. Haneche, B. Boudraa and A. Ouahabi, “Compressed Sensing 

Investigation in an End-To-End Rayleigh Communication 

System: Speech Compression,” 2018 International Conference 

on Smart Communications in Network Technologies 

(SaCoNeT), 2018, DOI: 10.1109/SaCoNeT.2018.8585702  

[18] H. Haneche, B. Boudraa and A. Ouahabi. “A New Way to 

Enhance Speech Signal Based on Compressed Sensing,”  

in Measurement, vol. 151, p. 107117, 2020,  

DOI: 10.1016/j.measurement.2019.107117. 

[19] H. Haneche, A. Ouahabi and B. Boudraa, “New Mobile 

Communication System Design for Rayleigh Environments 

Based on Compressed Sensing-Source Coding”, in IET 

Communications, 2019, DOI: 10.1049/ iet-com.2018.5348 

[20] M. K. M. Al‐Azawi and A. M. Gaze. “Combined Speech 

Compression and Encryption Using Chaotic Compressive 

Sensing with Large Key Size,” in IET Signal Processing 

vol. 12. pp. 214-218, 2018, DOI: 10.1049/iet-spr.2016.0708 

[21]  Y. Ji, W.-P. Zhu and B. Champagne, “Recurrent Neural 

Network-Based Dictionary Learning for Compressive Speech 

Sensing,” in Circuits, Systems, and Signal Processing, vol. 38, 

pp. 3616-3643, 2019, DOI: 10.1007/s00034-019-01058-5 

[22] R. Mori and T. Tanaka, “Non-Binary Polar Codes Using Reed-

Solomon Codes and Algebraic Geometry Codes,” 2010 IEEE 

Information Theory Workshop, Dublin, Ireland, 2010, pp. 

DOI: 10.1109/CIG.2010.5592755 

[23]  A. Hadi, Optimization and Analysis of Polar Codes in 

Communication Systems, Doctoral Thesis, Faculty of Science 

and Engineering, The University of Manchester, United 

Kingdom, 2018. 

[24] H. Gan, S. Xiao, Y Zhao, X. Xue, “Construction of Efficient 

and Structural Chaotic Sensing Matrix for Compressive 

Sensing,” in Signal Processing: Image Communication, vol. 68, 

pp. 129-137, 2018, DOI: 10.1016/j.image.2018.06.004 

[25] X. Wang and Y. Su, “Image Encryption Based on Compressed 

Sensing and DNA Encoding.” in Signal Processing: Image 

Communication, vol. 95, p. 116246, 2021, 

DOI: 10.1016/j.image.2021.116246 

[26] T. N. Canh, Thuong and B. Jeon, “Restricted Structural 

Random Matrix for Compressive Sensing,” in Signal 

Processing: Image Communication, vol. 90, p. 116017, 2021, 

DOI: 10.1016/j.image.2020.116017 

[27] G. Javadi, A. Hajshirmohammadi and J. Liang, “Power and 

Sub-Channel Optimization of JPEG 2000 Image Transmission 

Over OFDM Based Cognitive Radio Networks,” in Signal 

Processing: Image Communication, vol. 58,  

pp. 157-164, DOI: 10.1016/j.image.2017.08.002 

[28] X. Li, X. Wan, M. Yang, J. Xue, N. Zeng, “A New 

Compressive Sensing Video Coding Framework Based on 

Gaussian Mixture Model,” in Signal Processing: Image 

Communication, vol. 55, pp. 66-79, 2017,  

DOI:10.1016/j.image.2017.03.009  

 

 

 

https://doi.org/10.1016/j.image.2017.03.009

