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Abstract

In this paper, a new design method for lat-
tice wave digital filters (WDF) which provides the im-
plementation of a half of multiplication constants with
few shifters and adders is proposed. The lattice WDF
can be designed to have in all second order sections
of the lattice branches, one common constant inde-
pendent of the filter order and transition bandwidth.
The value of the common constant depends only on
the frequency for which the filter attenuation is 3dB
and may be adjusted according to the predetermined
number of shift-and-add operations. A very efficient
filter is also obtained for the separation of 1/3 of the
used band.

[ Introduction

Wave digital filters (WDFs) are derived from
real lossless reference analog filters and, if properly
designed, behave completely like passive circuits [1],
[2], [3], [4]. The advantages of WDFs are: excellent
stability properties even under nonlinear operating
conditions resulting from overflow and roundoff effects,
low coefficients wordlength requirements, inherently
good dynamic range, etc., [4]. For a proper design of
WDFs a solid mathematical basis developed for classi-
cal synthesis techniques (including those for microwave
filters) is at disposal. Moreover, explicit formulas for
Butterworth, Chebyshev, inverse Chebyshev and elliptic
filters are derived [4].

For WDFs there exists a great number of
different structures according to the realization possi-
bilities of reference filters [2]. The design method for
lattice. WDFs where both lattice branches are realized
by cascaded first- and second-degree allpass sections is
presented in [4]. The number of multipliers in result-
ing lattice WDF is equal to the filter order what is a
minimum in comparison with the number of multipli-
ers required for other possible realizations of a given
transfer function. Therefore, any reduction in the

number of multipliers in a lattice WDF contributes to
the computational efficiency of IIR filters.

The purpose of this paper is to present a
new design method which provides the replacement of
a half of multipliers in a lattice WDF with a few shift-
ers and adders (or with shifters only). The investiga-
tions are restricted to elliptic function digital filters
including Butterworth filter as a boundary case. The
reason for choosing elliptic filters is twofold. It is well
known that an elliptic IIR filter can achieve a sharper
transition between band edges than any other filter
with the same number of coefficients. The second
reason is the possibility to design an elliptic filter
transfer function with z-plane poles located on the
circle in the z plane [5]. Consequently, the obtained
disposition of the poles can be used to adjust the
values of a part of multiplication constants. As a
boundary case, the Butterworth filter also belongs
here.

The design method which provides the reduc-
tion of the number of multipliers in lattice WDFs ex-
ists only for half-band (bi-reciprocal filters) [4], [6],
[7] and can be achieved for elliptic and Butterworth
filters. The Butterworth filter and elliptic filter with
equal tolerances in pass- and stop-bands can fulfill
half-band filter requirements. It is shown in [5] that a
half-band filter is only a boundary case of an IIR
filter derived by the bilinear transformation from an

 elliptic minimal Q-factors analog prototype [8] or from

a Butterworth prototype. Generally, those filters have
their z-plane poles on the circle which in the half-
band filter case degenerates to the imaginary axis.
Thus, one should examine the possibilities to apply an
elliptic minimal Q-factors transfer function for an arbi-
trary lattice WDF design in order to reduce the num-
ber of multiplication constants.

It is shown in this paper that a lattice WDF,
if derived from an elliptic minimal Q-factors analog
prototype or from a reference Butterworth filter, can
be designed to have in all second order sections of
the lattice branches, one common constant independ-
ent of the filter order and transition bandwidth. The
value of the common constant depends only on the
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frequency for which the filter attenuation is 3dB and
may be adjusted according to the predetermined num-
ber of shift-and-add operations. This way, in the ma-
jority of practical filters, the half of multiplications has
~to be evaluated only by two shifts and one addition or
even by only one shift.

This paper is divided into six major sections.
In the next section, some basic definitions concerning
WDFs are briefly recapitulated. In the third section,
the synthesis using first- and second-degree allpass
sections is described. The WDFs design using an ellip-
tic minimal Q-factors analog prototype is presented in
the fourth section. Several examples illustrating sim-
plicity and efficiency of the proposed design are given
in the fifth section.

II Basic definitions for lattice WDFs

The principles of WDFs have been described
in [3]. In this section, only basic definitions, as given
in [4], will be repeated.

The WDFs are derived from a real lossless
reference filter using the voltage wave quantities [1].
The lattice WDF is derived from a real symmetric two-
port equally resistively terminated [3], [9]. The refer-
ence filter is an analog prototype designed in s vari-
able. The transfer function of a lattice WDF is ob-
tained by the bilinear transformation:

)

and replacing s=jQ0 and z=¢"", the relation between
the frequencies of reference filter and the frequencies
of WDF is obtained:

wT )
Q= tan(7) ¥))

where T=1/; and f; is the sampling frequency.

In both lattice branches of the lattice WDF
(Fig. 1) S;(s) and S,(s) are reflectances of reactances,
i.e., alipass functions. Therefore, they may be written
in the following form:

and

A
520 = g2(s) @

where g,(s) and g(s) are Hurwitz polynomials of de-
gree n; and n,, respectively.

X, X,

input | 1 ——4——6 input ,

12 12

output | output ,
Y, Y,

Fig. 1. Wave-flow diagram of a lattice WDF

It is well known that the transfer functions
which are realized by these WDFs are given by:

SI(S) + Sz(s) _ @

5 =56 )

$11(8) = 8p(8) =

52(9) = 819 ()

= 6
2 g(s) ©

$21(8) = 812(8) =

where h(s), f(s) and g(s) are the so-called canonic
polynomials.

We consider in the following the low-pass or
high-pass case, and we will suppose that n, is odd
and n, is even. The opposite choice would simply
amount to changing the sign in [6] and this possibil-
ity can be ignored. Interchanging g;(s) and g(s) in
(3) and (4) would simply lead to the dual realization,
therefore this possibility will also be ignored.

From (3), (4), (5) and (6) we can see that

g(s) = gi(s) x &) ™)

ie, g(s) is a Hurwitz polynomial of degree n where
n=n;+n, Consequently, n must be always an odd

(=s)
$1(s) = 81 ® (3) number for the low-pass (high-pass) filters. The degree
8118 of the lattice WDF [3] is the sum of the degrees of
the two reflectances S;(s) and S,(s).
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Further, from (3), (4, (5) and (6) it is
clear that

g1(=5)g (s) + g1(5)g2 (=9)

h(s) = > ©
and
f(s) = 81(S)g2 (-s) ;“ gl(—s)gz (s) (9)

ie., h(s) and f(s) are even and odd polynomials, re-
spectively. : '

It is known, that the transfer functions are
related at real frequencies s=jo by the Feldkeller
equation:

\511(1'9)‘2 + ’321(i9)|2 =1 (10)

The attenuation (loss) is defined by
a(Q) = — 20 log [S, (<) (11)
The filter characteristic function is defined by

_Su® _he)

O] (12)

C(s)

II Synthesis using cascaded allpass
functions ‘

In this paper we will consider the realization
as a cascade of elementary sections by means of cir-
culators [1]. The elementary sections are the first- and
second-degree allpass sections. A section of degree one
has a reflectance of the following form:

—S+BO

8(s) = —— B, (13)

and a corresponding signal-flow diagram of a wave
digital realization using the so-called two-port adaptor
is given in Fig. 2 where R is the port resistance and
the multiplier coefficient vy, is given by [1], [4]

e

port 1 port
M
~ |
Y0
R a% T
O : I |
1

Fig. 2. Wave-flow diagram of an allpass section of
degree one

poit 2 port 3 - port 4

port 1

R R

R _Jzu _;Zi
o1t 0O0—0O O

or

port 1 pott 2 port 3 pott 4
BB S

O— O

Fig. 3. Equivalent wave-flow diagrams of the #th sec-
ond-order allpass section

A second degree allpass section has a reflec-
tance of the form

52 - Ai(s) + Bi

S(s) = 3
s + A;(s) + B;

(15)

and using the two-port adaptors the corresponding

wave digital realization has equivalent wave-flow dia-
grams given by Fig. 3, where the coefficient values are

given by [1], [4]

A, -B, -1

Y2i-1 = N B A1 (16)
and

1- B,
Y2 = T 17

i

Hurwitz polynomial g(s) can be presented in
a product form

1- By (n=1)/2 )
Yo =178, 14 g) = s +By) I G° +Ajs +By) (18)
i=1
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where A; and B; are determined by the transfer func-
tion pole s;

A = -2 Re (s) 19)
and
Bi= s [ - (20)

In Fig. 4, the signal-flow diagrams of two-port
adaptors which always lead to the scaling in the best
possible way are shown [4]. We can observe that a
different structure can be chosen depending on the
multiplier value y. Furthermore, we can see that the
multiplier coefficient oo which has to be implemented
is always positive and not larger than one-half.

It is proved in reference [4] that the poles
are alternately distributed among g,(s) and g(s). Ac-
cording to this property and using only the parameters
defined in (18), all adaptor coefficients can be com-
puted by (14), (16) and (17). Therefore, the adaptor
coefficients are determined by the transfer function
poles of the analog reference filter.

In the next section, it will be demonstrated
that for one class of WDF's the filter design can be
even simpler if based strictly on the z-plane pole pa-
rameters.

IV WDFs design using an elliptic minimal
Q-factors analog prototype

Equation (17) presents a direct relation be-
tween the radius of the reference filter pole and the
adaptor coefficient y,. It is clear from (17) and (20)
that for the poles placed on the circle whose center is
at the origin of the s-plane, the coefficients vy, are
equal for all second-degree allpass sections, what is
already obtained for Butterworth filters in [4]. In the
following this property will be extended to the elliptic
filters.

It is shown in [8], that the poles of an el-
liptic minimal Q-factors filter are placed on the circle
with the center at the origin of the s plane. The ra-

dius of the circle is /Q, , where Q, is the normal-

ized stop band edge frequency and for s=j,/Q, the

filter has the attenuation of 3 dB.

Let the required digital filter specifications be
given with boundary frequencies for the pass-band F,
and F, for the stop-band, pass-band ripple A, and

minimal stop-band attenuation A, expressed in dB, as
shown in Fig. 5.

port 1 port 2
O

O O

two port adaptor y

O

b) a= vy for 0 < y< 1/2

©) y=0

O

e a= 1+y for -1< y < -1/2

Fig. 4. Signal-flow diagrams of two-port adaptor yield-
ing optimal scaling for sinusoidal excitation

Informator YUMTT sekcije
YUMTT Chapter Informer

Jun 1996.
June, 1996



Page 33

Stfana 33

As shown in Fig. 5, some margin in the filter
performance always exists, what permits some freedom
in the choice of the transfer function boundary fre-
quencies f, and f, For a proper design, it is neces-
sary to establish the relation between f, and f, and
the stop-band edge frequency of the analog prototype
Q,. From (2), it follows directly that:

tan 7if,
tan 7ef

a =

2y

where the pass-band edge frequency of the analog
prototype is assumed to be unity.

For the elliptic filters derived from [8], the
tolerances of the square magnitude function HE)[
in the pass- and stop-band are equal:

8y = 8, = 22)

where L is the module of an elliptic filter characteris-
tic function:

2

‘H(e j2nf, N

.2 f 2
‘H(e’ ”P)\ -1

L is uniquely determined by Q, from (21) and can
be calculated from [10].

a = -10 log (H(ei®)[2)

L —

L
|
|
|

‘ |

‘ I
RSV 9 oK I I
0 Fp fp fam f. F,
Fig. 5. A typical elliptic filter

The pass- and stop-band attenuation of the
realized filter:

a, <A, and 2, > A, (24)

are also uniquely determined by L, i.e. Q,

a, = 10log (1+1/L), a, = 10 log (1+L) (25)

Usually, but not necessarily, we have f, > F,
and f, < F,

The frequency where a digital filter has the
attenuation of 3 dB corresponds in the analog filter
domain to the frequency ,/Qa, and can be directly

determined by the relation
tan? Tf3qp = tan mfy, tan 7if (26)

, It is shown in [5], that the poles of an el-
liptic IR filter, derived by the bilinear transformation
from an analog minimal Q-factors prototype [8], are
placed on the circle which is orthogonal with the unit
circle and has the center on the real axis of the z
plane at the point x, Fig. 6. For the corresponding

frequencies /Q, (s plane) and fip (z plane), x, is
obtained directly from [5]:

1+ tan? Tf34p 1

X 0 (27)

1 — tan® mfzgg €08 27f3qB

For an arbitrary complex pole z=r, ¢ by
the elimination of the vertical leg {x, 2z} of right
triangles {0, x, z;}, {X, X, %}, Fig. 6, the following
useful relation can be established:

2
T

2r; c0s 0; = =01+ r-z) cos 2mf (28)
i i i 3dB

The analysis presented in this section can be
used for the computation of the adaptor coefficients
Yo, Yzi1 @nd Yy by the filter parameters defined in the
z-plane.

Let us observe equations (14), (16) and (17).

In equation (14), y, is determined by the
coefficient B, which presents the real first order pole
(6), (18). For a minimum Q-factors elliptic filter, the
real pole is placed at the intersection of the negative
part of the real axis and the circle (O,Jil—a ). Hence,

instead of (14) we can write:

1-,Q,
'YO—I_'_@ (29)
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The digital filter frequency f;g3 corresponds in
the s plane to s=j/Q, , and using the equivalence
from (2), equation (29) becomes:

1 — tan mf3qp
Yo = (30)
1 + tan TCf3dB
j
) Z3dp
e - \\
/ *
/ | zl D\
/ | \
-1 ,l\ 1
0 Bl le Xo
n |
Z;
-

Fig. 6. Poles loci in the z plane

Complex poles s; ¢=1.2,...(n-1), are placed
on the circle (O,JQ_a ) in the left half of the s plane.
Therefore all B, ¢ = 1, 2, ..(n-1)/2, in (17) and
(18) are equal and consequently, all adaptor coeffi-
cients v, are equal for /=1,2, ..(n-1)/2. Substituting
B,=Q,=tan’ f,; in equation (17), the expression for
¥z can be obtained:

1 - tan® (nf3qp)

1
Y2i = COS(ZTCfsdB) =—  (31)
Xg

1+ tanZ(EdeB)

i=1,.,@0-1)/2

The same expression has been derived in [4]
for Butterworth filters. Equation (31) is a generaliza-
tion of the result from [4] and signifies that the
equal values for the adaptor coefficients vy, are ob-
tained for all transfer functions whose poles are placed
on the circle. It is to be noticed that y is uniquely
determined by f3dB, and f3dB depends only on the
boundary frequencies f, and f,.

The expression for vy, given by (16) can be
modified if the parameters A; and B; are represented
by the corresponding z-plane parameters. Applying the
already established relation B=Q,=tan’(nf) and
expressing A; by the bilinear transformation (1) and

using (28), equation (16) may be simplified to the
form:

Yaiog = —I2, i=12,..., (n-1)/2 (32)
where 1, is the radius of the ith pole in the z plane.

Computations of vy, Y2y and yy from (30),
(31) and (32) are based on the z-plane poles parame-
ters what permits the application of the conventional
computer programs for IIR digital filters. Obviously, the
computer program has to be developed on the basis
of bilinear transformation.

It is clear (Fig. 5), that filter specifications
are fulfilled for various combinations of the elliptic
filter boundary frequencies f, and f, This property
offers the opportunity to select a convenient value
(with a2 minimal number of adders) for v, and after-
wards to determine the new values for f, and f, in
order to check whether the specifications are fulfilled.
By increasing the filter order, the bandwidth where f;
and f, may be placed is extended.

One should notice some additional properties:

1. The absolute value of the constant,
[yal=|1/%| is always smaller than unity, because the
center of the z-plane poles loci x,, is always placed
outside the unit circle.

2. The distance of the z-plane poles from the
unit circle is nearly maximal if compared with elliptic
filtlers having another pass-band ripple [5], what is of
importance for the implementation.

3. Expression (31) is independent of the filter
order and of the transition band what permits, by an
appropriate choice of fyg, adjusting the value of the
adaptor coefficient y,. This way, a half of multipliers
in the obtained WDF have the same value which, by a
proper choice of a single frequency, can be adjusted
according to the minimal number of shift-and-add
operations without any influence on the other filter
characteristics.

4. The choice f;3=1/4, gives the half-band
(bireciprocal) filter described in [4], [6], [7], [L1]
According to (31), x, becomes infinite what means
that the poles loci in the z plane, the circle with the
center at z=x,, degenerates to the imaginary axis.
Consequently, all adaptor coefficients y,, i=1, 2,.., (n-
1)/2, are set to zero. This is to say, that a half-band
WDF is derived from a minimal Q-factors analog pro-
totype by the appropriate choice of s-plane/ z-plane
equivalent frequencies.
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V Design examples

From given F, and F, the initial guess for
f.g and also the range of the permitted values for

Yz are to be determined:

tan’ nfsgg = tan TFp tan 7k, (33)

1- tanz 1Ef3dB

Y2i = —
1+ tanz 1'Cf3dB

I - tan’(nFy) 1 — tan®(xf,)

-—; (34)
1 + tan”(nF,)

—T 2 o <M<
1+ tanz(an)

The first step is to see if anyone of yy from
Table 1 belongs to the range defined in (34), and is
also close to the approximate value from (34).

Similarly to Table 1, another table can be
created presenting the values which can be made by
the sum or difference of two coefficients. The next
step is to see if from the new table, a value for 7y
can be selected such as to lie in the range (34) and
to be as close as possible to the approximate value
from (34). For the examples from [12] and [9], the
values of the parameters obtained by this procedure
are given in [13].

Table 1.

L Vai Yo f48
~172 | -0.267949 ~ —1/2—1/2° | 0.166667=0.5/3
-1/2% | ~0.127949 ~ —1/2°-1/2° 0.209785
12| —0.0627461 ~ —1/2° 0.230053
-12° | 00312806 ~ -1/2° 0.240046
~1/2° | —0.0156288 ~ —1/2° 0.245026
—12° | —0.00781298 ~ —1/2 0.247513
172 | -0.00390631 ~ —1/2° 0.248757
1722 | —0.00195313 ~ —1/2° 0.249378

0 0 0.25=0.5/2
1/2° 000195313 ~ 1/2° 0.250622
12" | 000390631 ~ 1/2° 0.251243
1/2° 0.00781298 ~ 1/2’ 0.252487
12 | 00156288 ~ 12° 0.254974
12* 0.0312806 ~ 1/2° 0.259954
1/2° 0.0627461 ~ 1/2° 0.269947
12° | 0127949 ~ 1/2°+1/2° 0.290215
12 | 0267949 ~ 1/2°+1/2° | 0.333333=1/3

Important remarks:

a) If for yy a single power of 2 is used (1/26 for
example), it practically means that there are neither
multiplications nor additions, but only shifting.

b) If vy, is presented with two powers of two
(1/2°+1/2° for example), then the multiplication is
replaced with two shiftings and one addition.

¢) Usually the filter order is increased if compared
with a classical design, but the number of multipliers
is reduced, [13].

d) For |1/%|<<1, the real pole can be implemented
with shifting only (Table 1), what reduces the number
of multipliers by one more. As a consequence, the
passband ripple is increased, but the resulting increase
is usually negligible if compared with A,

e) a, is usually considerably smaller than A, what
increases the pass-band margin. This consequently,
means that the rounding of the other multiplication
constants (y,.,) to the convenient values affects the
stop-band characteristic rather than that of the pass-
band.

f) For the computation of poles, conventional com-
puter programs for digital filters can be used if based
on the bilinear transformation [4], [5], [14]. After-
wards, it is necessary to distribute the z-plane poles
among two lattice branches. The following simple pro-
cedure, as proved in [13] can be applied: order the
poles according to the increasing modules, one branch
encloses the real pole and then every second conju-
gate complex pair, the second branch encloses the
remaining poles.

Example 1: Figs. 7 and 8 display several magnitude
characteristics of the filters realized with parameters
from the first row of Table 1, yy; =1/2, and f
=0.166667 ie. f;g =0.5/3. Obviously, the resulting
filters separate 1/3 of the used band of a digital filter
regardless of the filter order, Fig. 7, or the transition
bandwidth, Fig. 8. All multiplication constants for the
filters from Figs. 7 and 8 are given in Table 2. It is
evident from Table 2 that all the second-order sections
of the presented filters have the common constant 7y,
=1/2. The distinction between sections is only in the
values of the parameters 7y,., which are the squares
of the pole radii.
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Table 2.a. a=-10log (HE)?) .
100 [ I
example a) b) c) 1
fas 0.5/3 0.5/3 0.5/3 wl - I
f, 0.22 0.20 0.18 1SS
n 9 9 9 o | I
) 3 ) 3 ) 3
Yo 1/2°+1/2 1/2°+1/2° | 1/2°+1/2
" —0.1451 —0.1683 -0.2252 w0l
Y5 —0.3328 —0.3945 —0.5245
Ys —0.5753 —0.6453 —0.7697 2 |
Y7 —0.8456 —08797 -0.9223 ¢
. 1/2 1/2 172 . . . . . . . . : ,
12 ! ! °% 0.1 02 03 04 05
Fig. 7. Amplitude characteristics for »=9, 11 and 13
Table 2.b. and fyy =0.5/3, f,=0.18.
example c) d) e)
f38 0.5/3 0.5/3 0.5/3 a = - 10 log (H(e/*)? ) I ‘
f, 0.18 0.18 0.18 80 Yoo A
n 9 11 13 T\ f=022/
3 3 ) 3 2 3 / 0\ .
Yo 1/2°+1/2 1/2°+1/2 1/2°+1/2 ol N
7 —0.2252 -0.1785 —0.1500 fa=0.20
Y5 —0.5245 ~0.4152 ~0.3376 .
40+ I fa=0.18
Ys —-0.7697 —0.6478 —~0.5467 I’ :
Y7 ~0.9223 —08205 —0.7217 5
Yo / —0.9448 —-0.8524 20| ;.'. .
: =12,i>0
Yu / / —0.9533 tl Y= 12,1
YVai 172 172 172 ¢
0 0 0.1 02 03 04 05

Table 2 with Figs. 7 and 8 illustrates the
flexibility of the elliptic filters designed to have one
common constant for all second-order sections. The
second-order sections are of the type given in Fig. 3
with v = 1/2 and v, from Table 2.

Fig. 8. Amplitude characteristics for #=9 and f;4
=0.5/3, f, = 0.18, 0.20 and 0.22.

Example 2: Requirements from [4], example No. 4:
sampling frequency 16kHz, pass-band edge frequency
3.4kHz (F, = 3.4/16 = 0.2125), maximal pass-band
attenuation A,=0.2 dB, stop-band edge frequency
4.6kHz (F, = 4.6/16 = 0.2875), minimum stop-band
attenuation A,=65dB. The 7th-order elliptic IIR filter,
realized with 7 multipliers, is used in [4] to fulfill the
requirements. It will be demonstrated that by applying
the approach presented in this paper, various filters
can be designed which satisfy the requirements and
provide realizations with the reduced number of mul-
tipliers.
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Let us, from given boundary frequencies, de-
termine the range of the permitted values of vy, . Us-
ing (34) one obtains:

and consequently y,; can bechosen as a value from
the set: '

va € { =128 —1/2%, .., 0., 1/2°, 1/2%}

The choice v, = 0 is the half-band filter
which fulfills the requirements with n=11 giving
2,=8 x 10°dB, a, =77.3dB, f,=F, f,=F,. The
filtler has only five non zero multiplication constants:
'Y1=—0.0661, ')’3_—'—02364, 'Y5="04525, Y7=_06711,
Yo =“0‘8856

If we select vy, =1/2* and f,=F, , the speci-
fications can be satisfied with n=9. For v, =1/24,
Table 1 gives fi3 =024 and f, can be calculated
from (12):

1 tan® m34B

fp=— tan 0.195
Y

tan 7ify

Obviously, f,=0.195 is smaller than F, How-
ever, the pass-band ripple of the obtained filter is very
low and the attenuation at the frequency F, which
lies in the transition band, is substantially below A,
Due to a very small pass-band ripple of the obtained
filtler, we can also quantize the constant 7y, which
represents the real pole. With approximate value
y0=1/2'5 the pass-band attenuation reaches its maxi-
mum at F, where it amounts to a, =0.005 dB,
what is substantially below the required A,=0.2dB.
The minimum stop-band attenuation is a,=67.6dB.
For the implementation only four multiplication con-
stants are needed: y,=-0.0840, y; =-0.2935, ys=-—
0.5565 and y;=-0.8401. The remaining 5 constants
V=12 1, = 75 = ¥ = 15 = 122 are to be
implemented as shifters.

Since the obtained margin in the pass- and
stop-band is large enough, we can try to decrease the
margin assuming f,<F, in order to reduce the num-
ber of multipliers by one more. In a few attempts,
using the same procedure as in the previous case, the
9th order filter with f, =4.57424 kHz is obtained
which can be implemented with only three multipliers.
The calculated values of the constants are: vy =1/24,

vo=1/2°, y;=—0.0858, y;=-0.2985, v,=—0.8432 and
ys=—1/2 —1/2* .

Obviously, 7ys can be implemented by two
shifts and one adder. The maximal attenuation in the
pass-band is a,=0.004dB and the minimum stop-
band attenuation is a, =66.7dB.

It is also of interest to notice the decrease in
the radii of filter poles in comparison with the classi-
cal elliptic filter design. If the radii of the poles near-
est to the unit circle are compared, we have for the
example No 4 in [4], rp, = 0.947 and the smaller
values for the new filters r,, = 0.918.

It is demonstrated through these representa-
tive designs that by the appropriate selection of the
elliptic filter design parameters, the number of multi-
pliers can be reduced from 7, as obtained in [4], to
only 3 although the filter order is increased from 7 to
9. Furthermore, the radii of the transfer function poles
are decreased. The attenuation curves of the four dis-
cussed realizations are displayed in Fig. 9. The flow
diagram for the filter with 3 multipliers is presented
in Fig. 10. '

-10 log (™))
o2f

ab /%

Fig. 9. Amplitude characteristics for F, =3.4kHz, A,

=(.2dB, F, =4.6kHz, A, =65dB, sampling frequency

16kHz:

a - [4]

b - v =0, v; =-0.0661, y; =-0.2364,
ys =—0.4525, v, =—0.6711, v, =—0.8856.

¢ -y =12% y=1/2°, v, =—0.0840, y; =—0.2935,
¥s = —0.5565, v; =-0.8401.

d -y, =12, y=1/2° | v, =—0.0858, y; =—
0.2985, y; =—0.8432, ys = —1/2-1/2" (f,
=457424 kHz).
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VI Conclusion

A new approach to designing elliptic wave
digital filters is presented. It is shown that a digital
filter transfer function derived by the bilinear trans-
formation from an elliptic minimal Q-factors analog
prototype has the z-plane poles placed on the circle
which is orthogonal with the unit circle. Accordingly,
the Butterworth filter is obtained as a boundary case.
This particular disposition of the poles is used for the
presentation of the WDFs multiplication constants. It is
shown that a half of the adaptor coefficients have the
same value which can be adjusted according to the
prescribed number of shift-and-add operations. The
adjustment of the coefficient value is achieved only by
a slight shift of the frequency for which the filter
attenuation is 3 dB. It is demonstrated through ex-
amples that filter specifications are fulfilled with a
reduced number of multipliers in comparison with the
classical elliptic WDF design. Moreover, the transfer
function poles radii are decreased. It is shown in the
paper that by the appropriate choice of s -plane/ z -
plane equivalent frequencies, a half-band (bi-reciprocal)
WDF is obtained.

The proposed design method is very simple.
The computation of the coefficients is based on the
z-plane pole parameters and therefore, the conven-
tional computer programs for digital filters can be
used.
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