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Historical background

Electrical transmission can be traced back to
1729 when Stephen Gray discovered that the
electrostatic phenomenon of attraction of small bits of
mater could occur at one end of a damp string
several hundreds feet long when the other end is
touched with an electrostatically charged body [1].
This was disclosed sixty years after Otto von Guericke
had noted that short treads connected to a primitive
electrostatic machine become charged throughout their
length, but it was not associated with electrical fluid
transmission until Gray's time. Gray also discovered
that his damp string should be supported by dry silk
treads but not by fine brass wires. In 1735 Charles
DuFay was the first to make distinction between
electrical conductors and electrical insulators and
reported the existence of two different kinds of
electricity, labelled later in 1747 as positive and
negative by Benjamin Franklin. On the basis of Gray’s
discovery between 1770 and 1830 several electrostatic
telegraph systems were constructed in various parts of
the world, which could transmit signals over distances
up to a few miles.

Following Volta’s discovery of the chemical
pile in 1800 and Oersted’s discovery of the magnetic
effect of a current in 1820 resulted in magnetic
telegraphs of which practical success achieved
Wheatstone and Cook in 1839 and Morse in 1844.
Because of problems with insulation, buried
transmission lines were quickly replaced by open wire
lines on poles. However, soon a need to span rivers,
seas and ocean urged again development of buried
cable transmission. This required further development
of transmission line theory and the promoters of
transatlantic submarine cables turned to William
Thomson (later Sir William and ultimately Lord
Kelvin)for advice. In 1855 Thomson published the first
distributed circuit analysis of a uniform transmission
line. Based on his specifications in 1858 an
underwater cable was made and laid across the
Atlantic. It carried messages for few weeks before
insulation failed.

The importance of cable development and
technological problems associated with its design
resulted in the development of a new class of
technical personnel which formed the world’s first
professional association of electrical engineers. From
these emerged the American Institute of Electrical
Engineers in the United States in 1884 and the
Institution of Electrical Engineers in England five years
later.

Further important mathematical development
of signal transmission calculation over transmission
lines was made by Oliver Heaviside, beginning in
1880. Heaviside noted that on most practical lines,
voice signals should travel with reduced loss if the
distributed inductance of the line could be increased
without adversely changing the other distributed circuit
coefficients. Heaviside’s work relayed strongly on
Maxwell’s theory and he wrote a series of 47 papers
between 1885 to 1887, all wunder the tittle
»Electromagnetic Induction and its Propagation” which
is the foundation of modern transmission-line theory
[2]. The problem of telephone signal transmission
was basically solved by Michael Pupin who developed
mathematical theory of loaded lines with periodically
inserted inductance coil. He also made artificial
transmission lines and experimentally proved his
theory and technique known as ,pupinization”. This
technique was the only one suitable for the long
distance signal transmission until the development of -
vacuum tube amplifiers around 1915. The first long
distance carrier-frequency telephone systems, in which
several voice frequency channels were transmitted over
a single wire pair was made feasible in 1919. This
technique, known as the frequency division
multiplexing” was  subsequently used for the
transmission of many telephone channels over one
coaxial cable, reaching few years ago the limit of
around 10000 analogue telephone channels.

Coaxial cable was another wire structure
which was originally investigated by Hertz in view of
its shielding property and ability to propagate high
frequency electromagnetic waves. He even experimented
with hollow metallic tube transmission but his early
death in 1894 prevented him from completing this
research. It was Rayleigh who in 1897 showed
mathematically that Hertz’s ideas of guiding
electromagnetic waves by proper wire structures were
correct. He did this by solving the boundary value
problem for Maxwell's equations for metallic tubes of
circular and rectangular cross-sections. He showed that
such waves could exist in a set of normal modes
that must have a longitudinal electric or magnetic field
component, and that ,propagation starts at some high
frequency set by the diameter of a circular pipe, or
width of a rectangular pipe, and the mode number”

[2].
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Theoretical background of the Smith chart

The differential equations for a uniform
transmission line are well-known Telegraph’s equations
of the form :

av(z,t) . di(z,1)
oLt _ _p2i&t)
P Ri(z,1) E» 1)
di(z,t) _ _ vz
o7 Gv(z,t)-C ER 2

A complete solution of equations (1) and
(2) would find expressions for vand i as functions
of z and ¢, subject to boundary conditions
determined by the nature of the source generator at
z=0 and the device connected to the end of line
z=1, where [is the length of the line.

The first step to find solution of the above
simultaneous equations is to eliminate one of the
variables. By taking the first derivative of equations (1)
and (2) with respect to z, after simple calculations
one obtains the following equations:

2 2
9 ;_’éf’t) =Lca ;ff’t)+(LG+RC)¥+RGV(ZJ)
(3)
2. 2. 1
‘7;?’) ~1c? ;Eg’t)+(LG+RC)%+RGi(ZJ)

@

Although both v(z,r) and i(z,f) obey the
same differential equation, their solutions are different
because of the boundary conditions which are not the
same for the two variables.

Even when R,L,C and G are postulated to
be constants for all values of current and voltage and
their derivatives, equations (3) and (4) are second
order linear partial differential equations in the time
coordinate and one space coordinate. Although similar
to ,standard” partial differential equations, they have
some additional terms which do not allow us to write
any simple complete general solution for v(z,r) and
i(z,t).

In special case when a sinusoidal time
dependence of voltage and current are assumed, i.e.

v(z,1) = Re{V (2)exp(jer)} ®
i(z,1) = Re{I(z)exp(jwr)} ©)

equations (3) and (4) become

2
%‘Z’ZQ_)_ [~0*’LC+ jo(LG+ RC)+RGV(z) =0
' @)
2
iazlg_z)_[_szC+ jo(LG +RC)+RG1I(z) =0
®

These equations are simple to solve and their
solutions in terms of V and I as phasor functions
of z can be written in the form

V(z)=V,e " +V,e*" ()]
I@)=1e"+I,¢e'" (10)
where
¥ =J(R+ jaL)(G + joC) = a+ jB (11)
or

]

{%[\/(R2 + 0 ) G? +0°C?) -0’ LC+ RG]}UZ

(12)

o

B= {-}[\/(R2 + 02 [2)(G? +w*C?) +w2LC—RG]}]/2
(13)

In equations (9) and (10) V,,V,,I,,1, are also
phasors and are the sets of two arbitrary coefficients
that are related through the boundary conditions.
Returning now to equation (5) we can write

e ® Rc{ej(ax—ﬁz+¢z)}

(14)

€™ Re{e/(@-F+)y +'V2p

v(z,0) =V,

where IV“,I and IVZPI are the peak amplitudes of the

arbitrary phasor coefficients V, and V, which are

assumed to stand for rms. values. In a similar way
we can derive expression for i(z,7). In equation (11)
o is the attenuation factor and B is the phase

factor. Both factors are function of frequency.

The first term on the right hand side of
equation (14) is the direct wave, ie. the wave
travelling in the +z direction, while the second term
is the reflected wave travelling in the opposite
direction. Both waves are harmonic waves. At every
coordinate z on the line the voltage varies
harmonically with time, with constant amplitudes.

General solution when an arbitrary time
dependence of the generator is assumed cannot be
obtained in a closed form similar to that shown in
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equation (14). However, in many cases of practical
interest, steady state sinusoidal time solution given by
equation (14) is of great value. While it cannot give
answers to a general telephone signal transmission it
can be of direct use in radio technique where a
modulated carrier transmission is studied.

The physical meaning of equations (9) and
(10) can be explained in terms of the direct and
reflected voltage and current waves. The terms with
e’ represent direct waves travelling in the +z
direction, while the terms with e*”* represent
reflected waves travelling in the —z direction.

For a line with no reflected wave
V,=1,=0, the ratio of direct voltage and direct

current is given by

V Vv ,R+ij . '
—=Llo L= 7 =R +iX 15
I I G+ joC 0 0T J%o (15)

and is independent of the position on the line. This
ratio is ,characteristic” of the line itself and is
appropriately named ,.characteristic impedance” of the
line. In general Z,is a complex number and its

components are given by

1

Ry =
° JG* +@*C?

172
{%[,/(R2 +0?I2)(G? +0°C?) + @*LC+RG }

(16)

+ 12
X, = —:L—{%[‘/(RZ +0’ )G’ +0’C*) ~0’LC —RG]}

V6 +a?c?
a7

The sign in equation (17) is positive if
oL/R>wC/G, which is true for most practical
cases. i

For high frequency operation of transmission
lines if wL/R and wC/G are sufficiently large
compared to unity, equations (12,13,16,17) give

o, =+R/Z,++GZ, (18a)
By =oVLC (18b)
Zy, =Ry, =JLIC (192)
Xopy =0 (19b)

The minimum frequency that will qualify as a
ohigh” frequency depends on the actual values of
R,L,C,G. For a high accuracy results it is also
important to remember that the distributed circuit
coefficients may be functions of frequency, particularly
Rand G increase steadily that the values of ratios
wL/R and oC/G are large compared to unity.

Impedance relations

When a uniform transmission line is not
terminated in its characteristic impedance Z,, but
with any arbitrary impedance Z,, there are always

reflected waves on the line, and the impedance at any
point of the line differs from Z,. The input

impedance at a distance z measured from the
generator is given by

_V _ VeV, e Ve 4V, e
LI LeT+Le Ve -y, e

(20)

If we put z=1I, where Iis the line length, the
impedance Z, is equal to the load impedance

Z,and we have

Vie"+V,e” 14T,

Zo=2 Vie=V,e”  °1-T,

@1

where we introduced a phasor, called the reflection
coefficient, representing the ratio of phasor voltages at
the load

V. Z, -2 i
FL =;/ie”' = ZL Zo =|FLleJ¢L N (22)
1 Lt4y

By substituting equation (22) into (20), after
simple calculations one obtains the input impedance
of a line of length I by putting z=0 in the form:

. o 14T e
Zz=0 = Z,.n = Zo ELC—_ZF (ZSa)
or
Zy 2,17 +tanh(yh) _ tanh(yl) +tanh™(Z, / Z,)
Z, 1+(Z,/Z,)tanh(yl)
(23b)

from which we see that for the terminating impedance
equal to the characteristic impedance, the input
impedance of any line length is equal to the
characteristic impedance.

On a line terminated in an arbitrary
terminating impedance, voltage and current waves vary
with distance in a form of standing wave pattern. For
a lossless line, the ratio of maximum to minimum
voltage is constant, for a lossy line it decreases
towards the generator. In various measurements we
often use a short line that can be considered lossless.
In that case y=jB, and from equation (9) we can

write

Mikrotalasna revija
Microwave Review

Decembar 1997.
December, 1997




Page 4

Strana 4

v, . .
V(D) =V, e-fﬁ{l + V—’eﬂ&) =V, e Pt (14]r, |e 41072800
1

249

When the exponential term in equation (24) is a
multiple of 27, the magnitude of V(z)is a maximum,
while when it is an odd multiple of m, it is a
minimum. The ratio of the two magnitudes is the
voltage standing wave ratio '

1+
VSWR = .| (252)
1-r,|
at any point on the line, and conversely
VSWR-1
I|=— 25b
I VSWR+ 1 @5b)

In deriving equation (24) it was assumed that the line
length is [, so that (I-z)is the distance measured

from the load.

Graphical representation of transmission
line quantities

Arithmetical calculation of complex exponential
and hyperbolic functions appearing in the transmission
line equations are time-consuming and the use of
mathematical tables is less effective than for the
corresponding functions of real variables. This is the
main reason for long use of graphical aids in
transmission line calculations.

A Chart Atlas of Complex Hyperbolic
Functions, published by AE.Kennelly in 1914 was
widely used for decades for the solution of equation
(23). The charts presented a loci of the real and
imaginary parts of the complex hyperbolic tangent and
other functions over the complex variable or neper-
radian plane [1]. Good significant-figure precision was
achieved by the large size graphs of about 50 x50
cm?, and used on systems as cable pairs and open-
wire lines at voice frequencies and low carrier
frequencies. For high frequency systems that appeared
some decades later, these charts were cumbersome
and another approach finally evolved.

As explained earlier, at high frequencies the
characteristic impedance of the line can be assumed
to be real with a high accuracy. The complex
impedance Z, is normalised with respect to the

characteristic impedance and is given by

1+T.
zz=‘Z—z‘=rz"'sz= z

Z, 1-T, (26)

where index z refers to the distance at which the
input impedance of the line is Z,, and the complex

reflection coefficient is T,. For simplicity we will
further omit the index z and write
V4 . _1+T

Z=—-=r+jx=
Z, 1-T

=|z|e’’ @7

Equation (27) is the starting equation for the
hemisphere charts that appeared in 1930’s. The first
was made by Smith at Bell Telephone Laboratories in
1931 but not published until January 1939 [4]. It was
a hemisphere chart with » and x circles, radial
scales. At the same time Carter in RCA Review
published the hemisphere chart with |z and 6

circles [5]. In 1944 Smith published another paper
about an improved transmission line calculator [6].
The present day use of the Smith chart is in many
respect founded on the latter paper which will be
reviewed in the following part of our paper.

In  Smith’s words ,the calculator is,
fundamentally a special kind of impedance coordinate
system, mechanically arranged with respect to a set of
movable scales to portray the relationship of
impedance at any point along a uniform open wire or
coaxial transmission line to the impedance at any
other point and to the several other parameters” [6].
The parameters which are plotted include:

1. Impedance, or admittance at any point
along the line with the corresponding
complex reflection coefficient at the same
point;

2. Length of the line between any two points
in wavelengths;

3. Attenuation between any two points in
decibels; '

4. Voltage or current standing wave ratio.

The impedance at any point along a
transmission line is normally considered to be that
impedance which would be measured at the input of
a line section connected to the load. For a steady
state, the generator impedance, as well as the
impedance looking towards the generator from any
point at which we observe the above defined line
impedance, do not affect the relative distribution of
current or voltage along the transmission line. The
generator impedance can affect only the power
delivered to the transmission line system, and not the
reflection coefficient or transformed load impedance.

The Smith chart is plotted on the voltage
reflection coefficient plane which can be considered as
plotted on polar coordinates as T'(Il,¢)=ITle’®, or
rectangular coordinates of the real and imaginary
components as I'(T,,I;)=T, + ;T;. Each component
of the reflection coefficient is a function of the
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normalised impedance at that cross-section, and they
are related through the complex equation (27) which
we now rewrite in terms of the real and imaginary
components of z and T':

1--r‘r —]T,

28
1+T, + jT; @8

r+jx=
or

_r+jx-1
r+jx+1

L+ T, (29)

r

From equation (28), after separating the real and
imaginary parts we obtain

2
__r 2 _ 1
[F' 1+r] +h _(1+r)2 (30)
17 1
[r,-1]2+[r,-;} == (31)

On rectangular coordinates (30) is the
equation of a circle whose center, for any value of r,
is located at T, =r/(r+1),T, =0,and whose radius
is 1/(r+1). Several of these circles for various values
of rare plotted in Fig.1. All the circles pass the point
1,0

Fig. 1. Coordinate circles for constant normalized
resistance on the Smith chart. The radii of the
particular circles shown are related by simple
fractions.

Equation (31) is another set of circles whose
center is located at T, =1, T, =1/x,and whose radius

is 1/x.Several of these circles are plotter in Fig.2,
this time for positive and negative values of x.The
most obvious symmetry seen here is the mirror-image
symmetry about the horizontal central axis of the
chart, for the circles corresponding to the same
absolute values of x.Only part of the circles inside
the central circle of radius one is shown, as the
maximum values of [I|, for any passive loaded line,

is one. For negative resistance, as for example in the
case of some amplifiers, the magnitude of the
reflection coefficient [T] can be greater than unity.

The circles given by equations (30) and (31)
are orthogonal circles that make a conform mapping
chart. To each T,,I, there is a single corresponding
r,x pair, and vice versa.

Fig. 2. Coordinate circles for constant normalized
reactance on the Smith chart.

Another type of conform mapping chart was
made by Carter [5], in which case to each r,TL,

there is a single corresponding [2,6 pair, and vice
versa. On the T,,I; coordinate system, constant |z|

curves, as well as constant @ curves are circles given
by equations:

L D
[F' 1—IZIZJ " (-2 o

7 +[T; +cot8] =1/ (sin6)? (33)

The Carter chart of normalised impedance
magnitude and phase angle, for several typical values
of [z and @ is plotted in Fig3. The vertical central

diameter of the chart is for |2J=1. Two impedances

of equal phase angle but with reciprocally normalised
magnitude lie at mirror-image points relative to the
I, axis. Carter chart is another form of Smith chart

1

as each pair of |20 has corresponding pair r,x
related simply as r=[z|cos0, and x=|z|sin®
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0.25

2a] =0

Fig. 3. The Carter chart. Coordinates of normalized
impedance magnitude and phase angle on the
reflection coeﬂiciqnt plane.

Concluding remarks

The construction of the detailed Smith chart
in its standard published form is shown in Fig.4. This
chart radically simplified transmission line analysis,
particularly in the ultrahigh frequency field. It played
an important role in developing microwave radar
systems.

During the Second World War, the inventor of
the Smith chart worked on antennas with great
success, so that in 1952 he was elected a Fellow of
the Institute of Radio Engineers for his contribution to
antennas and graphical analysis. In 1969 he published
book Electronic Applications of the Smith Chart in
Waveguide, Circuit, and Component Analysis. After
retiring from the Bell Laboratories, Smith founded
Analog Instruments, which sold
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Fig. 4. A standard commercially available form of Smith chart graph paper. Copyrighted 1949 by Kay Electric

Company, Pine Brook, N. J.
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navigational instruments for the light aircraft and later
added a line of Smith chart and related items. At the
time he died in August 1987, it was reported that
more than a nine million copies of the chart had
been sold [7]. The Smith chart appears in at least 12
different types of the trademarked type, including a
»negative Smith chart” for the analysis of negative
resistance devices. Today, the most modern, computer
based automatic network analysers rely on the Smith
chart for data display, and the Smith chart use is
common in most modern textbook and courses in
electrical engineering.

The Smith chart is no doubt a unique
diagram which have been widely used for nearly
seventy years and is still one of the most common
every-day mean for presenting data. It has many
advantages due to its simplicity to interpret and give
an overall, quick insight over complex behaviour of
many microwave circuit components, both passive and
active. We believe that it will be in use for many
years to come not only as a pedagogically perfect
analogue data display, but also as an aid to
professionals in obtaining quick answers to many
transmission line problems which they meet.
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