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Abstract—In the theory of Darlington type filter synthesis 
extraction of transmission zero sections one by one, leading to a 
cascade of Darlington-A, B, C, D and Brune sections bears 
serious limitations like numerical accuracy problems, negative 
and/or extreme element values or impractical topologies for 
Darlington-C-D and Brune sections. In this paper all such 
problems are evaded/eased by extracting the transmission zeros 
as groups to form circuit sections which are readily convertible to 
multiple coupled resonator forms. In this approach, transmission 
zeros at s=0 and s=∞∞∞∞ are extracted as groups to form doublets of 
resonators, the jωωωω-axis and σσσσ-axis transmission zeros are 
extracted as groups to form triplets of resonators, pairs of jωωωω-axis 
and σσσσ-axis transmission zeros and complex transmission zeros are 
extracted as groups to form quadruplets of resonators, etc. The 
classical element extraction procedure in transformed frequency 
domain is revised to cover extraction of complex transmission 
zeros as forth order section by zero shifting from both s=0 and 
s=∞∞∞∞ leading to realisation as a quadruplet of resonators. Thus, 
the theory of cascade synthesis is generalised to include cascaded 
doublets, triplets, quadruplets and other N-tuplets of resonators 
as building blocks. It is found out that the limitations due to usual 
numerical accuracy problems are also reduced a lot and the 
resulting element value spreads can be controlled to avoid 
extreme values.  

I.  INTRODUCTION 
Cascade synthesis for direct design of filters by placement 

of transmission zeros (TZs) is a well established technique 
which involves no approximations and has maximum 
flexibility for shaping both amplitude and phase response by 
adjusting locations of TZs [1]-[6]. However this theory 
encountered difficulties in the following aspects: 
1. Circuit sections corresponding to complex and σ-axis 
transmission zeros (Darlington-D and C sections) come out to 
be impossible to realise in most cases. 
2. Circuit sections corresponding to s=jω axis transmission 
zeros may get extreme or even negative element values when 
the transmission zeros are very close to passband edges. 
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3. In general, this approach involves extreme numerical 
precision problems when the order of the filter gets large. 
4.  At microwave frequencies most filters are realized in direct 
coupled resonator forms as shown in Fig. 1.a where the circles 
denote LC resonators and the thick lines denote L or C type 
couplings. However such structures can’t meet the extreme 
selectivity and phase linearity requirements of modern 
applications. These requirements are overcome by introducing 
cross couplings between non-adjacent elements, as described 
in the pioneering works of Rhodes [7], Atia-Williams [8], 
Cameron [9], Pfitzenmaier [10], [18], Bell [11] followed by a 
great number of publications [12]-[20] using different and 
mostly special approaches, leading to different topologies 
some which are shown in Fig. 1.b-d.  

The main topic of this paper is to provide a systematic 
approach for synthesizing both direct coupled and cross-
coupled filters of all types by modifying the classical cascade 
synthesis approach. The essence of the approach is that, 
contrary to the classical approach, the transmission zeros are 
not extracted one by one, but as groups leading directly to 
cross-coupled resonator blocks like Doublets, Triplets, 
Quadruplets, Quintuplets, etc. Thus the resulting filter will be 
cascades of N-tuplets of resonators. A novel approach is 
developed for the extraction of either complex TZs or a pair of 
jw-axis or σ-axis TZs in the form of cross coupled 
quadruplets, by zero shifting from both s=0 and s=∞. It is also 
shown that s=σ axis TZs can be realized as Triplet sections, in 
the same way as s=jω axis TZs. The main advantages of this 
approach can be summarized as follows: 
i) The close correspondence between the transmission zeros 
and the circuit sections realising them eases tuning and 
adjustment of response.  
ii) The designer has the control to reach at all the possible 
alternative equivalent solutions, enabling judicious selection 
of the most feasible solution.  
iii) A further advantage of this approach appears in its 
numerical precision. The resulting element value spreads can 
be controlled during extraction stage of circuit blocks to avoid 
extreme element values and breakdown of the extraction 
process because of numerical precision-roundoff type 
problems in high degree filters.  
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Fig. 1. Direct coupled and some cross-coupled resonator filter 

structures. 

II. EXTRACTION OF COUPLED RESONATOR 
BLOCKS  

Two port transfer function of a filter can be formed by 
placing transmission zeros (TZ) at s=0, s=∞, some finite 
transmission zeros (FTZs) on jω−axis (si=±jωi), some on 
σ−axis  (si=±σi) and some complex TZs (si=±σi±jωι),  
depending on the requirements on amplitude selectivity and 
group delay flatness. In the classical cascade (ladder) synthesis 
the circuit is realised by extracting these transmission zeros as 
proper circuit sections one by one to form the cascaded 
element filter. When the order of the filter is high, and if the 
transmission zeros are extracted in a careless order, numerical 
accuracy problems start to accumulate and after some steps, 

extreme element values start to show up which, in some cases 
makes the synthesis impossible. Through the experience of the 
authors, it was observed that the best cure for such numerical 
accuracy problems can be evaded to a great extent by 
extracting the transmission zeros not one-by-one, but as a 
group to form direct or cross-coupled resonator blocks. 
Besides overcoming numerical problems, this approach yields 
direct or cross-coupled topologies directly, without using the 
special techniques devised for cross-coupled topologies. The 
coupled resonator topologies which correspond to certain 
transmission zero groups are classified as Doublets (two 
resonators coupled inductively or capacitively), Triplets (three 
resonators with simple L or C type couplings) , Quadruplets, 
Quintuplets, Septuplets, etc. The filters resulting by cascading 
such N-tuplets are termed as Cascaded Triplet (CT), Cascaded 
Quadruplets (CQ), etc. filters. In the following subsections 
extraction of such N-tuplet sections and resulting filter types 
will be described. 

A. Transmission Zeros at s=0 and s=∞: Doublets and Direct 
Coupled Resonator Filters  

Direct coupled resonator filters are formed by assigning 
TZs only at s=0 and s=∞. The number of TZs at s=0 (Nzero) 
and s=∞ (Ninf) set selectivity of the filter in lower and upper 
stopbands. The TZs at s=0 come out to be series capacitors 
and shunt inductors while the TZs at s=∞ are series inductors 
and shunt capacitors, as shown in Fig. 2.a. These TZs can be 
extracted in different orders to form a variety of circuit 
topologies. Since our main interest is coupled resonator filters, 
an example with Nzero=3 and Ninf=3 is given in Fig. 2.b. In 
this example, the transmission zeros are extracted one by one, 
in the order zero-zero-zero-Inf-Inf-Inf. The resulting circuit 
can then be converted into coupled resonator form by 
application of Norton transformation on the two series 
elements, as described in Fig. 2.b. Norton transformation is 
shown in Fig. 2.e as applied on a parallel LC in series arm. 
This conventional approach suffers from numerical accuracy 
problems for high degree filters. Further, it also requires 
iterative application of Norton transformations to reduce the 
spread in the shunt element values, for example to form equal 
shunt inductors or equal shunt capacitors.  
Fig. 2.c-d describes a shorter way to reach coupled resonator 
form. In this approach, the transmission zeros are extracted as 
four degree sections formed by either one TZ at s=0 and three 
TZs at s=∞ or three TZs at s=0 and one TZ at s=∞. The TZs 
can either be extracted one by one and then Norton 
transformation is applied to form coupled resonator form 
named as Doublet, or, through proper formulation, one may 
extract readily formed doublets corresponding to   four TZs. In 
either formulation one can enforce equal shunt inductor or 
equal shunt capacitor conditions during extractions. Since the 
adjacent doublets will share common resonators, this fact 
should be taken into account during extraction.  
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Fig. 2. Extraction of TZs at s=0 and s=∞ and formation of doublets 
and direct coupled resonator filters.   

B. Transmission Zeros on s=jw and s=σ  axis: Triplets and 
C Triplet Filters 

TZs on s=jω axis are used to increase selectivity of filters 
near the passband edges while TZs on s=σ axis are used to 
linearize phase responses of lowpass filters. s=jw-axis  
transmission zeros are extracted by zero shifting from either 
s=0 (if the TZ is in lower stopband) or from s=∞ (if the TZ is 
in upper stopband), leading to the circuit sections shown in 
Fig. 3.a (with positive signs). s=σ axis TZs also lead to similar 
circuits, but with one negative element in the LC resonators 
(named as Darlington-C section). When converted into 
coupled resonator form (using Norton transformation), the LC 
resonators become the coupling elements between resonators, 

as shown in Fig. 3.a. LC type coupling elements are usually 
undesirable. Such couplings can be replaced by a simple L or 
C type coupling elements by introducing cross-couplings 
between nonadjacent resonators. This is possible by extracting 
sixth order circuit sections as shown in Fig. 3.b which 
involves, besides the s=jw axis or s=s axis FTZ, there are 
either one TZ at s=0 and three TZs at s=∞ or three TZs at s=0 
and one TZ at s=∞. The TZs may be extracted one by one, in 
the classical way as shown in the top of Fig. 3.b and then it 
can be converted into coupled resonator form by applying 
Norton transformation to the series elements.  
 

 

Fig. 3. Extraction of jω-axis and σ-axis TZs and realization in CT 
form. 

It is also possible to extract the same circuit in two pieces, 
one as a Doublet, followed by extraction of the FTZ section. 
The spread in element values can be adjusted by repeated 
application of Norton transformations to the series elements. 
Thus, we get a direct coupled three resonator circuit, with one 
of the couplings being LC type. The LC type coupling can be 
converted into simple L or C type coupling by introducing 
cross coupling between Node-1 and Node-3, thus obtaining 
three mutually coupled resonator circuit named as Cascaded 
Triplet (CT). Elimination of one of L or C of the LC coupling 
and determination of element values of the resulting CT 
section can be done by elementary row-column operations 
applied on the admittance matrix of the three node circuit. 
This procedure is described in the Appendix qualitatively. The 
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nature of coupling elements (L or C type) depends on the 
position of the realised FTZ with respect to passband, as well 
as on the relative number of TZs at s=0 and s=∞. Though 
tedious to formulate, one may as well extract the CT section 
directly, without passing through the two stages described in 
Fig. 3.b.  If more than one FTZs exist, then they may all be 
realised as separate CT sections, thus forming a CT filter, as 
shown in Fig. 3.c. It should be noted that each CT section of 
the filter realises on FTZ. Therefore in such filters it is 
possible to tune a FTZ  without affecting the other FTZs. It 
should also be noted that each CT section requires a total of 
four TZs at s=0 and s=∞.   

C. Pairs of  jω-axis  or σ-axis Transmission Zeros: 
Quadruplets and CQ filters   

A pair of jω-axis or σ-axis transmission zero can be realised 
in the classical way, as shown in Fig. 4.a, as cascades of Brune 
or Darlington-C sections.  

 
 

Fig. 4. Realisation of a pair of jω-axis or σ-axis FTZs as a CQ 
section and formation of CQ filters.   

 
 
 
 

A direct coupled resonator form can be formed by including 
either one TZ at s=0 and three TZs at s=∞ or three TZs at s=0 
and one TZ at s=∞. The FTZ’s may be extracted in different 
orders as shown in the top of Fig. 4.b. Application of Norton 
transformation to the series elements converts the circuit into 
direct coupled resonator form with LC type couplings between 
the resonators 2-3 and 3-4. LC type couplings can be replaced 
by simple L or C type coupling elements by introducing cross-
coupling elements between resonators 1-4 and 2-4 or 1-4 and 
1-3 by applying row-column additions on the admittance 
matrices of these direct coupled resonator forms. One may 
also combine the two adjacent FTZ sections to form a single 
fourth order section (appearing as a fourth order coupling 
element) and then apply the row-column operations. Though 
tedious to formulate, instead of extracting the TZs one by one, 
it is also possible to realise the circuit by extraction a doublet 
and a fourth order section or by extracting the quadruplet 
directly. Such quadruplet are termed as CQ (Cascaded 
Quadruplet) sections. Thus, bandpass filters with even number 
of FTZs can be formed by cascading such quadruplets as 
shown in Fig. 4.c, named as CQ filters.. The diagonal cross-
couplings disappear if the FTZ pairs are located symmetrically 
on the two sides of the passband. However symmetry 
condition is usually unknown and can be found by tuning the 
FTZ locations until the diagonal cross-couplings disappear.  

D. Extraction of  Complex Transmission zeros as CQ 
Sections 

Complex TZ quadruplets, si=±σi±jωι are used to linearize 
phase response of bandpass filters. Conventionally a complex 
transmission zero quadruplet, can be extracted in the form of a 
Darlington-D section as shown in Fig. 5.a. This structure is 
useless as it is for use in coupled resonator filters. The authors 
of this paper had developed a simpler version which involves 
zero shifting from both s=0 and s=∞ [31]. The complex TZ 
quadruplet is extracted as a shunt LC resonator followed by a 
series arm fourth order section, as shown in Fig. 5.b. If a 
complex TZ is extracted as a block together with either one 
TZ at s=0 and three TZs at s=∞ or one TZ at s=0 and three 
TZs at s=∞, as shown in Fig. 5.c, then this circuit section can 
be converted into a CQ section, in the same way as in the 
previous (double FTZ) case. Since the four complex conjugate 
TZs are always symmetric with respect to both jω-axis and σ-
axis, the resulting CQ section will not have diagonal cross-
coupling. 

By cascading such CQ sections, linear phase CQ filters can 
be formed as shown in Fig. 5.c. 
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Fig. 5. Extraction of a complex TZ as a CQ section and formation of 

a linear phase CQ filter. 

E. Quintuplets, Septuplets and N-tuplets 
The same approach can be applied to form higher order 

cross coupled modules to realise more than two j�-axis or 
complex TZ’s as a single N-tuplet. Fig. 6.a shows formation of 
a five resonator block named as quintuplet. It is extracted as a 
degree 10 circuit section with either Nzero=1, Ninf=3 or 
Nzero=3, Ninf=1 and converted into direct coupled resonator 
form. Then the row-column operations are applied to 
introduce necessary cross couplings and eliminate undesired 
couplings. A quintuplet can realise either three jω-axis FTZ’s 
or a complex TZ and one j�-axis FTZ. It is also possible to 
realise these FTZs as a cascaded of a CQ section and a 
Doublet or three CT sections at the expense of using more TZs 
at s=0 and s=∞.   

Fig. 6.b shows formation of a six resonator block named as 
septuplet. A septuplet can realise either four j�-axis finite 
TZ’s or two complex TZ’s. It is extracted as a degree 12 
circuit section with either Nzero=1, Ninf=3 or Nzero=3, 
Ninf=1 and converted into direct coupled resonator form. 
Then row-column operations are applied to place the 
necessary cross couplings and eliminate undesired couplings. 
These FTZs may also be realized as cascades of CT and/or 
CQ sections, but at the expense of using more TZs at s=0 and 
s=∞.  

Higher order N-tuplets can be formed in similar ways. 
However since row-column operations get extremely tedious, 
for such filters the approaches using optimization and other 
techniques may advisable [9], [14-17].   
 

 
Fig.  6. Five and six resonator cross-coupled blocks 

One can form Cascaded Triplet, Cascaded Quadruplet or 
mixed CT-CQ-quintuplet-septuplet filters by extracting the 
relevant circuit blocks in any order and then converting them 
into N-tuplet forms.  

Filters made up of NR resonators will have a total degree of 
2NR. Since there are Nzero+Ninf TZs at s=0 and s=∞, the 
total number of finite TZs will be 2NR-(Nzero+Ninf). Clearly, 
the single N-tuplet realization (FCC filter) will have the 
maximum possible number of finite TZs which is 2NR-4 
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because Nzero+Ninf=4 for such filters. All the other filters 
with the same number of resonators formed by cascading 
several N-tuplets will have less number of finite TZs because 
each N-tuplet section needs Nzero+Ninf=4, and in total the 
filter will have Nzero+Ninf>4. This in turn leaves 2NR-
(Nzero+Ninf) degrees for realization as finite TZs which is 
less than that of the single N-tuplet case. The difference 
between Nzero+Ninf of a single N-tuplet and a multiple N-
tuplet filter of the same degree reflect itself as limitations on 
amplitude or phase response as follows: 
− When high skirt selectivity is required the single N-tuplet 
version is advantageous because it can collect all its 2NR-4 
degrees near the band edges as (2NR-4)/2  jω-axis finite TZs at 
the expense of lower minimum stopband insertion loss. 
Cascaded N-tuplet filter can locate less number of finite TZs 
there, but the level of minimum stopband loss will be higher. 
− In linear phase applications flat delay bandwidth of a 
single N-tuplet filter can be wider than that of cascaded N-
tuplet filter with the same number of resonators at the expense 
of less selectivity. This is because in single N-tuplet filters 
2NR-4 degrees can be realised as (2NR-4)/4 complex TZs to 
flatten delay. Since cascaded N-tuplet filter has Nzero+Ninf>4, it 
will have higher selectivity at the expense of narrower flat 
delay bandwidth than single N-tuplet filter. There will be only 
[2NR-(Nzero+Ninf)]/4 complex TZs. High selectivity forms a 
limitation for the flat delay bandwidth. 

In short, the approach adopted in this paper enables the 
designers to make use the wealth of knowledge on cascade 
synthesis of filters for designing, modifying, evaluating and 
classifying cross coupled filter solutions in a systematic way. 
This approach will also enable one to develop alternative 
equivalent structures like FCC or CT-CQ or other cascaded N-
tuplet versions in a controlled manner because it is clear which 
circuit section contributes to which TZ. Considering the 
number of possible alternative CT, CQ, etc. solutions and 
realisations that would be obtained by extracting the TZs in 
different orders, it is clear that the number of cross coupled 
solutions can assume large values. Another advantage of the 
approach developed in this paper is that the designer has the 
control for developing all the possible alternative solutions, 
judge the effects of various specifications of the filter on 
element values and hence select or tailor the best solution. 

III. FORMULATION OF TRANSFER FUNCTION AND 
ELEMENT EXTRACTION 

In this section a novel method will be described for the 
extraction of complex TZs. The other TZs can be found as 
special cases of this general approach.extraction. Consider a 
passive, lossless, reciprocal two port circuit with resistive 
terminations. Using Belevitch notation [2], S-parameters 
S21(s) and S11(s) of a lossless, reciprocal two port can be 
expressed in the forms 

 S21(s)=p(s)/e(s)          S11(s)=f(s)/e(s)  (1) 

where p(s) and f(s) are even or odd polynomials with real 
coefficients and e(s) is a strictly Hurwitz polynomial related to 
f(s) and p(s) through Feldtkeller equation; 

 e(s)e(-s)= f(s)f(-s)+p(s)p(-s) (2) 

Transducer power gain of the two port generalized to 
s=σ+jω plane can be expressed in the form 

 
)s(K)s(K1
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where K(s) is termed as the characteristic function of the filter 
defined as  
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ε is termed as passband ripple factor. f(s) and p(s) are monic 
polynomials (coefficients of highest order terms are unity). 
Response of the desired filter can be shaped by forming 
proper polynomials p(s) and f(s) which also set K(s)K(-s), or 
inversely, one can form a proper K(s) from which the 
polynomials f(s) and p(s) can be extracted. For typical 
equiripple or maximally flat bandpass filters p(s) and f(s) are 
of the form  
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where n0 is the number of TZs at s=0, ωi’s and ωr’s are jω− 
axis TZs and reflection zeros respectively. The third factor in 
p(s) is formed by the complex conjugate quadruplets of TZs, 
sk= ±σk ±jωk. The number of TZs at s=∞ is equal to difference 
between degree of e(s) and degree of p(s). σ−axis TZs are 
excluded because they are used only in LP or HP filters. 
Amplitude response can be shaped by specifying the desired 
passband edge frequencies, passband ripple and by placing 
proper number jω-axis TZs with some being at s=0 and s=∞. 
Phase response can be shaped by placing complex TZs and 
tuning them while observing the response. The reflection zeros 
are automatically set after these specifications. That is f(s), can 
be recognised as the numerator of K(s)K(-s). Knowing p(s) 
and f(s), the polynomial e(s)e(-s) can be found from 
Feldtkeller equation. Then, e(s) is found using the left half s-
plane roots of e(s)e(-s)=0. After e(s), f(s) and p(s) are 
obtained, one can form any one of the two port parameters of 
the circuit, like S, Z, Y, or ABCD, for element extraction. 
However due to severe ill conditioning, finding the roots of 
f(s)f(-s)=0 and e(s)e(-s)=0 are problematic because all 
reflection zeros are squeezed inside the passband while the 
roots of e(s)e(-s) are clustered near the passband edges. Such 
numerical accuracy problems are reduced to a lot by if the 
whole synthesis is carried out in the transformed frequency 
domain as summarized below 
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F. Formulation of Impedance Functions in Transformed 
Domain 

The following frequency transformation maps the passband 
of bandpass filters on s=jω axis onto the whole imaginary axis 
of the transformed domain [3], [4]: 
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where ωp1 and ωp2 are the lower and upper passband edge 
frequencies. This transformation separates the zeros clustered 
in and near the passband, easing numerical accuracy problems. 
The lower stopband 0≤ ω≤ωp1 is mapped into the range 
ωp2/ωp1≤ x ≤ ∞ on z=x axis. The upper stopband, ωp1≤ ω≤∞ is 
mapped into the range 0≤ x ≤ 1 on z=x axis. The whole real 
s=σ axis is compressed into the range 1 ≤ x ≤ ωp2/ωp1 on z=x 
axis. Under this transformation a TZ at s=0 maps to Zi=1/a 
while a TZ at s=∞ maps to Zi=1. A jω-axis TZ pair, si = ±jωi is 
mapped to the same point Zi=Xi on real z-axis: 
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A complex TZ quadruplet si = ±σi ±jωi is mapped onto z=x+jy 
plane as Zi=Xi±jYi where  
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The desired characteristic function for an equiripple 
passband general stopband bandpass filter can be formed by 
using these TZs as follows: 
 

Let’s denote the transformed versions of the polynomials 
f(s) and p(s) by F(z2) and P(z2) respectively. Then the 
transformed version of K(s)K(-s) can be written as 
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Consider the polynomial V(z) defined in terms of the 
transformed versions of the TZs, Zi as  
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where the first term is due to n1 jω-axis TZs including those at 
s=0 and s=∞ and the second term is due to the complex TZs 
with n2 being the total degree. Since complex TZs are placed 
as quadruples, n2 and n2/2 are even always. Consider the 
function formed by V(z) and V(-z): 
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Equiripple property of this function can readily be proved 
by using complex algebra as follows: 
Let 
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Using these polar forms, V(z)/V(-z) can be written as 
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where γ and χ are defined as 

 ∑∑ χ=χγ=γ ii and  (15) 

Using (14) in (12) we get 
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Inside the passband substitution of z=jy yields  

 )(cos)z(K)z(K 2222 χ+γε=  (17) 

So the condition 222 )z(K)z(K0 ε≤≤  is satisfied inside the 
passband in an equiripple manner.  

After forming )z(K)z(K 22 , the z-domain counterparts of 
f(s), p(s) and e(s) which are denoted by F(z2), P(z2) and E(z2) 
respectively can be determined. The numerator and 
denominator of )z(K)z(K 22  give directly F(z2) and P(z2) 
respectively: 

 )z(V)z(F 2
e

2 ε=  

 )z(zV)z(V)z(P 2
o

2
e

2 +=  (18) 
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where the subscripts e and o refer to even and odd parts of the 
polynomial Ve. The expression for E(z2) will be extracted 
from the product )z(E)z(E 22 which is formed as 

 ( ) )z(Vz)z(V1)z(E)z(E 22
o

222
e

222 −ε+=  (19) 

using Feldtkeller equation. E(z2) should contain only the left 
half of s-plane roots. However information on the locations of 
roots are lost after transformation into z-domain. Therefore 
E(z2) need be found through an indirect way as described in 
[4].  

G. Element Extraction Procedure 
Element extractions can be carried out from z11 and y11 

parameters which can be found in terms of even and odd parts 
of the polynomials E(z), F(z) and P(z) as follows: 
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where upper and lower signs refer to symmetric and antimetric 
circuits respectively. The input impedances corresponding to 
these functions, (renamed as Zin) can take one of the following 
four types: 
 
Type-1: zin has poles at both s=0 and s=∞:  
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Type-2: zin has zero at s=0 and a pole at s=∞:  
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Type-3: zin has pole at s=0 and a zero at s=∞:  
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Type-4: zin has zeros at both s=0 and s=∞:  
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where N and D are real polynomials. Symmetric bandpass 
filters are always of Type-1 or Type-4. 

In cascade synthesis each extracted element or circuit 
section realises a certain TZ. A jω-axis finite TZ is realised as 
a Brune section by zero shifting technique (partial pole 
removal). The pole (zero) of the admittance (impedance) 
function, at either s=0 (if the TZ is in lower stopband) or s=∞ 
(if the TZ is in upper stopband) is shifted to the frequency of 
the desired TZ in order to create a zero (pole) at that 
frequency in the remaining admittance (impedance) function. 

The same technique is also applied for extraction of the σ-axis 
TZs, leading to Darlington-C sections. Since usually σ-axis 
TZs appear only in lowpass filters, they are extracted by zero 
shifting from s=∞. Complex TZs are traditionally extracted as 
Darlington-D sections which are rather complicated structures 
for realization [5]. One novelty of this paper is that complex 
TZs are extracted either as a series or shunt fourth order 
section as shown in Fig. 7. This is possible by shifting zeros at 
both s=0 and s=∞ simultaneously to create TZs at the desired 
locations. This technique can be summarized for realisation of 
series arm fourth order section of a complex TZ as follows. 

 
Fig. 7. Complex TZ sections. 

In order to extract such a circuit section, the input 
admittance 1/Zin(z) must have a zeros at both s=0 and s=∞. 
Hence Zin is of Type-4. The zeros at s=0 and s=∞ are shifted 
to s0=±σ0±jω0 which corresponds to Z0 = ±X0 ± jY0 by 
extracting shunt inductor and capacitor, Lsh and Csh, as shown 
in Fig. 7. This process leads to the relation  
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where Y1(z) is the original input admittance and Y2(z) is the 
admittance of remaining circuit after removal of the pair Lsh-
Csh. The values of Lsh and Csh should be such that 

0)z(Y
0Zz2 == . The remaining impedance Z2(z)=1/Y2(z), will 

have a pole at Z0 = ± X0 ± jY0 which can be extracted as a 
series arm fourth order section whose impedance Zq(z) can be 
expressed in terms of four unknowns, L1, C1, L2, C2 in z-
domain as 
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In order to have the complex TZs at the desired frequencies, 
the fourth order section element values should satisfy the 
following two equations: 
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On the other hand the relation between the impedance Z2(z) 
and Zq(z) is 
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Equating the real and imaginary parts of this equation we get 
two more equations, thus enabling us to solve the four 
unkowns L1, C1, L2, C2. Extraction of the shunt arm fourth 
order section shown in Fig.  7 can be done in the same way, 
but by starting from the impedance of Type-1. In both fourth 
order sections of Fig. 7, the elements L1 and C1 come out to be 
negative. The negative element problems will be resolved after 
conversion into cross-coupled form. 
The jω-axis and σ-axis TZs can be extracted through the same 
formulation, as special cases with either σi=0 or ωi=0.  

IV. DESIGN EXAMPLE 
In this section an example will be presented to demonstrate 

the new approach. It is observed that in linear phase filters the 
complex TZs si =± σi ± jωi should be chosen as σi ≈(ωp1-ωp2)/2 
and ωi ≈ωp0 with ωp1 and ωp2 being passband edge frequencies 
and ωp0 being passband center. The passband center is 
customarily defined as the geometric center which is correct 
only for bandpass filter mapped from lowpass prototypes. 
However this definition is not valid for the filters with 
asymmetric responses. The actual passband center is affected 
by the number of TZs at infinity, zero and finite frequencies as 
well as passband edge frequencies.  
 
Example:. Specifications of the filter are:  

Passband ripple = 0.1 dB, passband edge frequencies at 
fp1=790 MHz, fp2=810 MHz, two finite jω−axis TZs are placed 
at 840 MHz and  860 MHz. A complex TZ is placed at 
±10±j799.7 MHz. 3 TZs are placed at both f=0 and f=∞. 
The TZs are extracted in the order shown in Fig. 8.a. Norton 
transformations are applied on series elements to convert the 
structure into coupled resonator form shown in Fig. 8.b. Using 
matrix operations the filter is then converted into CQ form as 
given in Fig. 8.c. Response of the filter is shown in Fig. 8.d. It 
is seen that phase response is linearized within 50% of the 
passband with only one complex TZ quadruplet. 

V. CONCLUSION 
 

The theory of cascade synthesis is revised to include 
doublets, cascaded triplets (CT), cascaded quadruplets (CQ) 
and other N-tuplets of coupled resonators as building blocks. 
The TZs are extracted in groups to form circuit sections which 
are readily convertible to N-tuplets of cross coupled 
resonators. Formulation of element extraction in transformed 
frequency domain is generalised to cover extraction of 
complex TZs, by zero shifting from both s=0 and s=∞, leading 
to fourth order sections that can be converted into CQ 
sections. Thus, CQ sections can be used for realisation of 
complex TZs, besides realisation pairs of jw-axis TZs. It is 
shown that s=σ axis TZs can be realized as CT sections in the 
same way as s=jω axis TZs. This approach, besides easing 
formation of cross coupled resonator filters, eases the usual 

numerical accuracy problems associated with the classical 
Darlington Type element extraction procedures. A design 
example is presented with one complex TZ and two jw-axis 
FTZ’s in upper stopband. 
 

 
Fig.  8. Design stages of the example. 

REFERENCES 
[1]  R. Saal, and E. Ulbrich, “On the design of filters by Synthesis”, 

IRE Trans. Circuit Theory,vol.CT-5, no. 4, pp. 284-327, 1958. 
[2] [2] V. Belevitch, “Classical Network Theory”, San Francisco, 

Calif.Holden-Day, 1968. 
[3] H. J. Orchard and G. C. Temes, “Filter Design Using 

Transformed Variables”, IEEE Trans CT, vol. CT -15, No.5, pp. 
385-408, Dec. 1968. 

[4]  R. W. Daniels, “Approximation Methods for Electronic Filter 
Design”, Mc Graw Hill, NY, 1974. 

[5]  H. Baher, “Synthesis of Electrical Networks”, J. Wiley and Sons, 
NY, 1984. 

[6]  M. Hasler and J. Neirynck, “Electric Filters”, Artech House Inc. 
Mass. 1986. 

[7]  J. D. Rhodes, “The Generalized Direct Coupled Cavity Linear 
Phase Filters”, IEEE Trans. Microwave  Theory and Tech. Vol. 
MTT-18, pp. 308-313, June 1970.   

[8]  A. E. Atia, A. E. Williams and R. W. Newcomb, “Narrowband 
multiple cavity synthesis,” IEEE Trans. Circuits and Syst., vol. 
CAS-21, pp. 649-665, Sept. 1974. 



Mikrotalasna revija  Decembar 2001. 

58 

[9]  R. J. Cameron, “General Prototype Network Synthesis Methods 
for Microwave Filters”, ESA J., Vol. 6, no. 2, pp. 193-206, 
1982.  

[10] G. Pfitzenmaier, “Synthesis and realization of narrow band 
canonical microwave bandpass filters exhibiting linear phase 
and transmission zeros”, IEEE Trans. MTT, Vol. 30, No.9,  pp. 
1300-1311,  Sept. 1982. 

[11] H. C. Bell, Jr., “Canonical Asymmetric Coupled Resonator 
Filters”, IEEE Trans. Circuits and  Systems, Vol. CAS. 26, pp. 
389-394, June 1982. 

[12] R. Levy, “Direct Synthesis of cascade quadruplet (CQ) filters”, 
IEEE Trans. MTT, Vol. 43, No.12,  pp. 2940-2945,  Dec. 1995. 

[13] R. Herstig, R. Levy, K. Zaki, “Synthesis and design of cascaded 
trisection (CT) dielectric resonator filters”, European 
Microwave Conference Proc., pp. 784-791, Israel, 1997.  

[14] H. L. Thal, “Design of microwave filters with arbitrary 
responses”, Microwave and Millimeter-Wave Computer aided 
Engineering, Vol. 7, No. 3, pp. 208-221, May 1997. 

[15] W. A. Atia, K. A. Zaki and A. E. Atia, “Synthesis of general 
topology multiple coupled resonator filters by optimization”,  
IEEE, MTT-S-1998 Proceedings, pp. 821-824, Maryland, 1998. 

[16] G. Macchiarella, S. G. D’Oro, “Design of generalized comb 
filters with asymmetric transmission zeros using arbitrary 
cascaded Triplet and Quadruplet sections”, European 
Microwave Conference Proceedings, Vol.2, pp. 179-183, 
Amsterdam, 1998. 

[17] R. J. Cameron, “General Coupling Matrix Synthesis Methods 
for Chebyshev Filtering Functions,” IEEE Trans., vol. MTT-47, 
pp.433-442, April 1999. 

[18] N. Yildirim, M. Karaaslan, Y. Sen and O. A. Sen, “Cascaded 
Triplet filter design using cascade synthesis approach”, MTTS-
1999 Symposium Digest, pp. 903-906, vol. 3, June 1999. 

[19] N. Yildirim, M. Karaaslan, Y. Sen, O. A. Sen, “Cascaded 
Triplet and Quadruplet Filter Design using Cascade Synthesis 
Approach”, TELSIKS’99, Nis, Yugoslavia, 13-15 Oct. 1999. 

[20] O. A. Sen, Y. Sen and N. Yildirim, “Synthesis of Cascaded 
Quadruplet Filters Involving Complex Transmission Zeros”, 
MTTS-2000 Symposium Digest, pp. 1177-1180,  Boston, June 
2000. 

[21] N. Yildirim, M. Karaaslan, Y. Sen, O. A. Sen: “Filpro: A 
synthesis and circuit transformations software for filters and 
multiplexers. WEB Page http://www.eee.metu. edu.tr/~nyil). 

APPENDIX: MATRIX TRANSFORMATIONS 
 

As a demonstration of the technique for conversion of a 
direct coupled resonator circuit into a cross coupled one,  
realisation of a jω-axis FTZ as a CT (Cascaded Triplet) 
section will be described qualitatively, with reference to Fig. 
3. Being a three resonator circuit, a CT section is a degree six 
circuit. Two degrees will be provided by the FTZ and the 
remaining four degrees will come from the transmission zeros 
at s=0 and s=∞. These four degrees can be shared between 
transmission zeros at f=0 and f=∞ as follows: 

•  Nzero=1, Ninf=3, leading to a circuit with a series 
inductor between Node-1 and Node-2, termed as 
inductive prototype.  

•  Nzero=3, Ninf=1, leading to a circuit with a series 
capacitor between Node-1 and Node-2, termed as 
capacitive prototype.  

The two prototypes and conversion of the synthesized 
circuits into direct coupled resonator form are shown in Fig. 
3.b. The direct coupled resonator circuits are then transformed 
into CT form using matrix operations. The Nodal Matrix of 
the direct coupled circuit is in the following form: 
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where  yij = sCij+1/sLij   i,j = 1,2,3 and i≠j , 
  yii = sCi + 1/sLi + yi(i+1) +yi(i-1)  
      

In order to eliminate either L23 or C23 and to introduce 
coupling between nodes 1 and 3, row 2 is multiplied by m and 
added to row 3 and then column 2 is multiplied by m and 
added to column 3. Resultant matrix has the following form:  
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 (A2) 

 
Proper choice of m results in single element (either 

capacitive or inductive) coupling between Node--2 and Node-
3 while introducing a bridge type coupling between Node-1 
and Node-3. The cross coupling element between nodes 1 and 
3 will be the same type as the  element between Nodes 1 and 
2. That is, an inductor L12 of inductive prototype will lead to 
inductive cross coupling element L13 and a capacitive coupling 
element C12 of capacitive prototype will lead to a capacitive 
cross coupling C13. The type of coupling element between 
resonators 2 and 3 is set by the position of the FTZ with 
respect to passband. An upper stopband transmission zero 
results in an inductive coupling L23 while a lower stopband 
transmission zero results in a capacitive coupling. For each 
prototype two more solutions can also be obtained which 
involve approximations. This is obtained by multiplying the 
third row and column of the final nodal matrix given in Eq. 
(A2) by –1. This approach yields negative L13 for inductive 
prototype and negative C13 for capacitive prototype. In 
narrowband filters the negative inductor (capacitor) can be 
replaced by positive capacitor (inductor) with negligible 
distortion in response.


