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Huygens-Kirchhoff's Theory in Calculation of 
Elliptical Gaussian Beam Propagation through a Lens 

 
Aleksandar Marincic 

 
Abstract. Based on Huygens-Kirchhoff's theory and thin lens 
phase change formulation, new closed form expressions have 
been derived for the radiation field of an elliptical Gaussian 
beam transmitted through a thin lens. For a special case of 
paraxial approximation, the new expressions reduce to well 
known q-parameter results if applied separately to the x- and y- 
Gaussian field expressions. As an example of using presented 
theory the condition to convert elliptical to quazi-circular 
Gaussian beam is derived.  
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I. INTRODUCTION 
 
Circular Gaussian field propagation through space and its 
transformation through lenses can be made using q-parameter 
and its transformation matrices. The radiation field can also be 
obtained as the solution of the paraxial wave equation [1], or 
as the solution of radiation field from an illuminated aperture 
[2]. All these are normally applied to a circular Gaussian 
beam and are given in closed form solutions. In the case of an 
elliptical Gaussian beam, closed form solution can also be 
obtained under assumption that separable solutions to the x- 
and y- field functions is applicable [2].  
In this work  we calculate Gaussian beam radiated from an 
aperture illuminated by an elliptical field distribution using 
Huygens-Kirchhoff's  theory. By applying paraxial field 
approximation, the radiation field double integral reduces to 
the product of two line integrals with respect to the x- and y- 
components.  
 
II. BASIC THEORY 
 
The aperture field of an elliptical Gaussian beam is assumed 
in the form: 
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where xw0  and yw0  are  the beam half-widths or beam waists 
along the x- and y- axes, respectively. Starting from (1) as the 
aperture field, and applying Huygens-Kirchhoff's method, 
under the condition that the distance between the aperture 
elementary area dx'dy', at the point (x',y'),  and  the field point  
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Fig.1. Geometry used in calculation of Gaussian beam 
radiation 

 
 (x,y,z), as shown in Fig.1, can be  simplified under the 
paraxial (or far field) assumption  
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Under this condition the field in front of the aperture can be 
obtained in a closed form [2]: 
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are the 1/e half-widths and the radius of curvatures along the 
x- and y- axes, respectively. 
Thin convex lens is assumed to change only the phase of the 
wave given by Eq. (3 ) and to get the field after the lens, one 
has to multiply it by the function [1]: 
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where f is the focal length of the convex lens and ./2 λπ=k  
In calculating the radiation field from the lens we assume that 
the aperture field is given by Eq.(3) for 1zz = , multiplied by 
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the expression (4). The aperture coordinates are now ),( ηξ  
and the far field point is again (x,y,z), but the coordinate z is 
now measured from the aperture centre. Now we apply the 
Huygens-Kirchhoff's integral to find the radiation field  
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where r in the exponential is taken as given by Eq.(2)  and as 
r=z in the denominator. The double integral in Eq.(5) can be 
split into the product of two line integrals of the form (shown 
only for the x-component): 
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The above integral can be further simplified  
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and after the change of variable  
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it is reduced to a table integral and solved to give finally: 
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where  
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In a similar way the integral with respect to y  leads to 
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Finally, the radiation field behind the lens is from 
Eq.(3,5,8,10) 
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where ./2 λπ=k  
The radiated field is also Gaussian and the 1/e half width at 
some distance z can be found after separating the real part of 
the term 
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The required square of the 1/e half-widths are then for the x- 
component 
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and for the y- component 
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For z=0 we have xzfx ww 10 =  and  yzfy ww 10 =  as it should 
be. The position of the beam waist after the lens is obtained 
from the derivative of (14) or (15). For the x-component it is  
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After substitution of wz1x and Rz1x from  Eq.(3) into Eq.(16), 
identical expression as the one obtained by the q-parameter 
calculation is found: 
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For the y-component similar calculation leads to  
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Upon substitution of the beam waist position from Eq.(16) 
into Eq.(14) it is found that the waist is 
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which is identical to the one derived on the basis of q-
parameter for the x- component.  The y- component is 
obtained in a similar way and the only difference is the index 
in (18) “x” which has to be replaced by “y”.   
After further elaborate calculations for the amplitude at the 
axis one obtains 
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where zfxw  and zfyw  are obtained from Eq.(14) and (15), 
respectively.  
 
III. TRANSFORMATION  OF ELLIPTICAL BEAM  
 
In the case when paraxial assumption holds, it is possible to 
find easily parameters of the elliptical beam after the lens. The 
most interesting point is that x- and y-  field integrals given by 
Eqs.(8) and (10), after passing through a lens will have, in 
general, different change with distance. This results in a non-
spherical wave front, and different waists xw1  and yw1 ,  as 
well as different waist positions z2x and z2y, as shown in Fig.2. 
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Fig.2. Variation of 1/e half-widths with distance, before  and 

after passing through a convex lens. 
 

For simplicity, in Fig.2, variations of zxw  and zyw ,  are 
shown in one plane although they are in the orthogonal planes. 
The beam waists after the lens are 
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In general, xw1  and  yw1  are different, because xx wa 00 ,  and 

yy wa 00 ,  are different, but we found that by varying z1, it is 

possible to find condition that leads to .11 yx ww = After simple 

calculations and using substitutions λπ /2
00 xx wa = , and 

λπ /2
00 yy wa = , it was found that the condition of equal beam 

waists is fulfilled for 
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In that case 
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Equal beam-waists means that the beam angles in the x- and y- 
planes are equal, and this converts elliptical beam into a 
quazi-circular beam at large distances.   
Distances z2x and z2y are different as can be seen from the 
expressions 
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In a special case for ,1 fz =  distances z2x and z2y are equal 
and equal to the focal distance, but in that case we have 
different xw1  and yw1 , and their ratio is 
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Eq.(26) can be interpretted as the conditionto  have twisted 
elliptical beam for 900. Since in this case both beam waists are 
at the same position, the phase front in the focal plane is 
plane.  
In general case, the ratio of beam waists can be calculated 
from the expression 
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The two special cases given by Eq.(23) and (26) can be 
derived from Eq.(27).  
 
IV CONCLUSIONS 
 
In this paper we presented new expressions for elliptical 
Gaussian beam transformation through a thin convex lens. It 
is shown that the paraxial approximation allows the double 
radiation integral conversion to the product of two line 
integrals. The variable of one line integral is  x-,  and in the  
other integral is y-, and this fact allows use of Gaussian beam 
parameters originally derived for a circular beam. It is also 
proved that the field at the beam axis can be calculated from 

zyzxzyx wwEwwE =000  which in the circular beam case 

becomes zz wEwE =00 . Both expressions can also be derived 
from the constant radiation power through an infinite aperture.  
 
Special case of elliptical beam transformation to quazi circular 
beam, if applicable in practical cases, can be of value in 
transforming semiconductor laser beam into the circular one. 
Further research is under way to clarify possibilities of the 
proposed  transformation technique and check for the errors in 
applying the paraxial approximation. The new approach can 
be used in calculation of  non-separable solution for the 
radiation field if numerical integration is performed.  
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