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Prediction of HEMT's Scattering and Noise Parameters 
using Neural Networks 
Zlatica Marinković, Vera Marković 

 
Abstract- Recently, neural networks have been applied in 

modeling of microwave transistor noise dependence on 
frequency and bias conditions. The aim of this paper is to present 
a way for improving the modeling process for the noise 
parameters with very irregular behavior. Improving is achieved 
by model decomposition and introducing S-parameters as 
additional inputs of neural networks modeling irregular 
parameters. In addition, S-parameters itself have been modeled 
using neural networks.  
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I. INTRODUCTION 
Low noise microwave transistors (MESFET, HEMT, HBT, 

etc.) are applied in many modern communication systems 
where a low noise level is required. Therefore, transistor noise 
characterization is very important for the fast and reliable 
design of such systems. Since the measurement procedures of 
noise parameters are complex and time-consuming [1], there 
are many attempts to develop the appropriate noise models of 
microwave transistors. It should be noted that most of the 
existing empirical or physical models are limited to one bias 
point.  

As highly nonlinear structures, neural networks are able to 
model nonlinear relations between different data sets. Owing 
to this ability, they have been applied in a wide area of 
problems. Especially, they are interesting for problems not 
fully mathematically described. Once trained they can predict 
response with quite a good accuracy, even for input values not 
presented in the training process, without changes in their 
structure and without additional knowledge of considered 
problem. Neural models are simpler than physically based 
ones but retain the similar accuracy. They require less time for 
response providing; therefore using of neural models can 
make simulation and optimization processes less time-
consuming, shifting much computation from on-line 
optimization to off-line training. 

Recently, neural networks have been applied in the 
microwave area [3]. Neural models of passive components are 
presented in [4], [5]. There are some neural models that refer 
to the microwave transistors, [5]-[9].  

Recently, the authors of this paper have developed several 
new noise models of microwave transistor based on neural 

networks [2] that are not limited to single bias conditions. 
Further improvements, intended to make noise modeling by 
neural networks more accurate, are presented in this paper. A 
complete model giving all noise parameters, as well as S 
parameters will be proposed. 

 

II. TRANSISTOR NOISE  
Any two-port noisy component can be characterized by a 

noise figure F, which is a measure of the degradation of the 
signal-to-noise ratio between input and output of the 
component, [1], and can be expressed as  
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where minF  is a minimum noise figure, nR  is an equivalent 

noise resistance, optΓ  is the optimum reflection coefficient, 

and finally, Z0  is normalizing impedance.  The optimum 
reflection coefficient refers to the optimum source impedance 
that results in minimum noise figure, minFF = . The noise 

parameters minF , optΓ  and nR  describe inherent behavior of 

the component and are independent of a connected circuit.  

III. TRANSISTOR NOISE MODELING USING 
MULTILAYER NEURAL NETWORK 

The basic idea of neural network application in microwave 
transistor noise modeling is developing of appropriate noise 
models that can accurately predict transistor noise parameters 
in a wide frequency range for all bias points from the 
operating range. As a first step, transistor noise parameters 
dependence on biases and frequency is modeled using 
multilayer perceptron network – MLP. A standard MLP 
neural network is shown in Fig.1. [3]. 

 
Fig.1. MLP neural network 
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This network consists of neurons (circles) grouped into the 
layers. The input signal is presented to the neurons from the 
input layer. Each neuron from one layer is connected to all 
neurons from the next layer. The output layer neurons 
represent outputs of the network. The layers that are not 
directly connected to the outside environment are hidden 
layers. Neurons are characterized by their activation functions. 
Here, a linear function for input and output layer and a 
sigmoid function for hidden layers are chosen. The 
connections between neurons are characterized by weighting 
factors.  

Input vectors are presented to the input layer and fed 
through the network that then yields the output vector. 
Network training is a process of adjusting of network 
parameters (activation function thresholds and connection 
weights) in order to minimize the difference between a 
network response and reference values. This process is 
iterative and it proceeds until errors are lower than the 
prescribed goals or until the maximum number of epochs 
(epoch - the whole training set processing) is reached. Here, 
for training purposes, Levenberg-Marquardt algorithm (a 
modification of "backpropagation" algorithm) is used. 

MLP networks are applied with the aim to model the 
HEMT transistor noise parameters dependence on frequency 
and bias conditions (dc drain-to-source and dc drain-to-source 
current). The used MLP network structure has four layers (i.e. 
two hidden layers). There are three neurons in the input layer 
(Fig.2, bf mark stems from networks inputs: 
biases&frequency) corresponding to: 
� dc drain-to-source voltage dsV , 
� dc drain-to-source current dsI  and   
� frequency f.  

The output layer consists of four neurons corresponding to: 
� minimum noise figure, 
� magnitude of optimum reflection coefficient,  
� angle of optimum reflection coefficient and 
� normalized equivalent noise resistance (50 Ω 

normalizing impedance). 
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Fig. 2. Neural model for noise parameters 

dependence on bias conditions and frequency (bf approach) 
 
Further, in order to improve modeling of parameters with 

irregular behavior (normalized equivalent resistance in most 
cases), a decomposition of the model is done and transistor 
scattering parameters are introduced as additional inputs of 
the neural network modeling critical parameter as it is shown 
in Figure 3, [2]. 

Obtained models are able to predict noise parameters with 
a good accuracy for a given bias point even in the case of the 
bias point not presented in the training process, without 
additional computation or change in the network structure. 

Although S-parameters easier to be measured than noise 
parameters much time can be saved using neural models of S-
parameters as well. At that way, all noise parameters can be 
predicted with high accuracy without additional measuring of 
S-parameters or their determination by simulation. This 
approach is presented in Figure 4. 
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Fig. 3. Neural model for noise parameters dependence on bias 

conditions, frequency (bf3-sbfrn approach) 
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Fig. 4. Neural model for accurate noise parameters prediction 

 
To quantify models’ accuracy average test error (ATE [%]), 

worst-case error (WCE [%]), and correlation coefficient r 
between the reference and the modeled data were calculated 
for the training values and test values completely different 
from the training ones, [3]. The Pearson Product-Moment 
correlation coefficient r is defined by: 
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where ix  is reference value, iy  is the neural network 
computed value, x  is the reference sample mean, and y  is 
the neural network sample mean. The correlation coefficient 
indicates how well the modeled values match the reference 
values. A correlation coefficient close to one indicates an 



Mikrotalasna revija  Decembar 2002. 
 

30 

excellent predictive ability, while a coefficient close to zero 
indicates low predictive ability.  

IV. MODELING EXAMPLE 

In this section, the noise modeling of Hewlett Packard’s 
pHEMT ATF-35143 will be presented. The modeling is done 
in the frequency range (0.5-10) GHz. The noise parameters 
values used for the training data are taken from manufacturer 
WEB site [10]. As it is presented in [2], after training process 
the best-obtained models are chosen. The best model for the 
minimum noise figure and magnitude and angle of optimum 
reflection coefficient is bf3_10_10. The best results for the 
normalized equivalent noise resistance give sbfrn_8_4 model. 
The fist model have 10 neurons in each of two hidden layers 
and the second 8 neurons in the first and 4 neurons in the 
second hidden layer (observed from input to the output).  

Further, using the S-parameter data from the manufacturers 
web site neural models of S-parameter dependence on bias 
conditions and frequency are trained. These models have three 
input neurons corresponding to bias conditions and frequency 
(like bf3 models) and eight output neurons corresponding to 
magnitudes and angles of S-parameters. As the best model, 
sp_10_10 model containing 10 neurons in each of two hidden 
layers is chosen.  

The next step was testing of the noise prediction. First, 
minimum noise figure and magnitude and angle of the 
optimum reflection coefficient were simulated using 
bf3_10_10 model. The simulation was done for biases used 
for the training as well as for the bias points not used in the 
training process. The test statistics is shown in Table I.  It can 
be observed that WCE is less than 2% and ATE less than 1% 
in the case of training biases at the network input, meaning 
that the network learnt training data very well. The correlation 
coefficient close to one confirms this observation. In the case 
of model testing for the input values not used for the training 
WCE and ATE are greater and correlation coefficients are 
smaller than in the previous case but are still quite acceptable 
(WCE less than 3% and ATE les than 1.5%). It means that 
this model can predict very accurately noise parameters for 
the all operating bias conditions. As an illustration, the 
simulated noise parameters for a bias point not used in the 

training process are shown the Figures 5a, 5c and 5d as solid 
lines with circles and compared with reference values (dots).  

Further, normalized equivalent noise resistance prediction 
by sbfrn_8_4 model was also done for training bias points and 
for the bias points not used for the training. In the first case, 
the manufacturer's S-parameter data, and in the second case, 
modeled S-parameter data are presented to the network. The 
comparison of normalized equivalent noise resistance 
prediction for the bias point not used in the network training is 
shown in Fig. 5b. It can be observed that predicted values in 
the case of manufacturer data at the network inputs (doted line 
with triangles) are very close to the reference values (black 
dots). Also, it can be seen that using of neural models of S-
parameters does not cause significant degradation of the 
prediction. The test statistics shown in Table I confirm the 
previous conclusion. 

V. CONCLUSION 

Fast and efficient low-noise design requires the microwave 
transistor models that can predict noise parameters in a wide 
frequency range. In this paper, a possible approach to the 
noise parameters modeling is proposed. This approach in 
based on the use of neural networks. Neural networks are 
trained with the aim to learn noise parameters dependence on 
bias conditions and frequency. In order to improve modeling 
of parameters with irregular behavior, model decomposition is 
done. Therefore these critical parameters (mostly equivalent 
noise resistance) are modeled using a separate neural network 
that has transistor scattering parameters as additional inputs as 
well. Further, S-parameters dependence on bias conditions 
and frequency is also modeled using neural networks. The 
final transistor noise model consists of three neural networks. 
Using this model, the noise prediction process becomes very 
simple, including only  the computation   of the neural 
network response for desired frequency and bias conditions. It 
is important to note that the prediction is very accurate not 
only for the biases used for the training process but also for 
the completely different ones. In such way, noise parameters 
can be predicted for all operating bias points.  

 

TABLE  I.    TESTING PROCESS STATISTICS 

Training values Values not used for training  

ATE[%] WCE[%] r ATE[%] WCE[%] r 

bf3_10_10 

minF  0.360875 1.69595 0.999728 1.03347 2.96388 0.999891 

optΓ  0.505099 1.3379 0.999808 1.00738 1.81556 0.999635 

)( optAng Γ  0.323535 1.04238 0.999911 1.23896 2.33307 0.999851 

sbfrn_8_4 :  manufacturer S-parameter values at the network input 

nr  0.103497 0.660071 0.99993 5.79087 28.5683 0.949293 

sbfrn_8_4 : modeled S-parameters at the network input (sp_10_10 neural model) 

nr  0.908401 11.8411 0.994026 7.06242 29.4353 0.938127 
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Fig. 5. Comparison of generalization capabilities of the bf_10_10 and sbf_10_10 models 

(a) minimum noise figure; (b) normalized equivalent resistance; 
(c) magnitude of optimum reflection coefficient; (d) angle of optimum reflection coefficient 
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