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Analysis of Cascade-Connected Planar Transmission 
Lines by ETS Method 

Miodrag Gmitrovi} and Biljana Stojanovi} 
 

Abstract – Equivalent Thevenin Source (ETS) method is here 
used for analysis of two-dimensional circuit constructed as 
cascade-connected uniform transmission lines with different 
lengths and reduced widths. New relations for solving such 
circuits are given and presented procedure is verified on two 
examples.  
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I. INTRODUCTION 

Different concepts for modelling and analysis of a large 
class of two-dimensional circuit structures are given in the 
papers [1-8]. The papers [1-2] describe two different methods 
for analysis two-dimensional transmission line equivalent 
circuit. In both papers the line is characterized in term of its 
transmission matrices A , B , C  and D  to discuss its 
properties. In the paper [1] ETS method is given and analysis 
is based on decomposition that two-dimensional circuit into 
cascade-connected ladder subnetworks with same number of 
input and output ports. This method is much efficient than the 
method of direct multiplication of the individual chain 
matrices [2]. 

The ETS method described in [1] can be applied to cascade 
connection of uniform lines with different lengths and reduced 
widths. Two-dimensional circuits are represented as cascade- 
connected networks with different reduced number of ports. 
Relations needed for analysis of such networks are given here. 
Also, the proposed procedure is verified on two examples of 
impedance transformer with different number of sections in 
cascade and different reduced number of ports in each section. 

II. ETS VOLTAGE AND IMPEDANCE CALCULATION 
– A SIMPLE CASE 

Cascade-connected planar transmission lines of different 
widths and lengths can be analysed as cascade-connected 
networks with different number of input and output ports. 
Such multi-port complex network is shown in Fig.1, where the 
first network is ETS described by matrix relation 
 STTS IZUU 22 −= . (1) 
In case of real sources the matrix T2Z  is a diagonal matrix 
which elements are 
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 i,ii,i=Rz , (2) 
and ,...,L,i 21= . The first and the other networks including 

the thk  network as the last one have L2  ports. The stk 1+  

network and all networks till the end have 12L  ports, where 
LL <1 . The voltage and current’s subscripts 1 and 2 indicate 

the input and output ports, respectively, and the superscript 
indicates the number of network in cascade connection. 

Cascade-connected networks with the same number of input 
and output ports can be analysed by ETS method [1]. Voltages 
and impedances of the thk  network can be recovered from the 
recurrent relations 
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It can be shown that these recurrent relations can be used 
also for the next cascade-connected network with different 
reduced number of ports.  

Multi-port network with L input and L output ports can be 
described by the equation system 
 k

k
k

k
k

221 += IBUAU , (5) 

 k
k

k
k

k
221 += IDUCI , (6) 

where kA , kB , kC  and kD  are transmission matrices of the 
thk  network in the cascade connection. If those networks are 

ladder networks then their matrices are given in the paper [1]. 
The impedance matrix obtained by the equation (4) is full 
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and it can be divided according the network connection given 
in Fig.2 in the next form 
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The output voltage vector of the thk  network can be 
divided in the next form 

 
[ ]
[ ]Tkkk

Tk
L

k
n

k
n

k
m

k
m

kk UUUUUU

232221

,21,2,2,21,21,22

       UUU

U

||

||

=

= +− ���

 (9) 



December, 2002 Microwave Review 
 

41 

Network

k

kk
1

1
2 UU =−

kk
1

1
2 II =−

T2Z

1 1 1

L L
L

T2U

1

L

Network

1k+

1 1 1

1
122

+= kk UU
1

122
+= kk II

1U

LU

SU

SI

1
1II =S

1
1UU =S

1
2

+kU
1

2
+kI

1L

LZ

1L 1L

 
 

Fig.1. Cascade connection of networks with different number of ports.  
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Fig.2.  Junction of two networks with different number of ports. 

 
and the voltage vector of ETS at the thk  open ended network 
can be divided in the form 
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  (10) 
The transmission matrices of the stk 1+  network and the 

other networks till the end are quadratic matrices of sizes 
LL×  and shapes  
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where 1  is identity matrix and 0  is zero matrix. The matrices 
r
k 1+A , r

k 1+B  and r
k 1+C  are matrices of the stk 1+  network 

with real number of ports and their sizes are 11 LL × , 
11 +−= mnL . 

Substituting the relations (8) and (10) into (3), the relation 
(3) can be further written as follows 
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The output voltage vector k
T 2,2U  is the input voltage vector 

for the stk 1+  network and it is necessary to solve only 
relation (14) in order to obtain the output voltage vector 
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for the stk 1+  open ended network. 
The impedance matrix of ETS for the stk 1+  network is 
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The last two recurrent relations are equal to the recurrent 

relations (3) and (4). The matrices used in these relations  
have the smaller dimension than the matrices used in the 
relations (3) and (4).  

If all voltages  
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where Kkki ,...,2,1 ++=  and K  is a total number of 
networks in cascade connection, are needed than the equation 
system (13-15) must be solved. 

 
The solving procedure for cascade-connected networks with 

reduced number of ports is as follows:  
1. The relations (3) and (4) are used to obtain k

T2U  and 
k
T2Z , i.e. ETS voltages and impedances for the first k  

cascade-connected networks. These vector and matrix are 
applied to the input ports of the next cascade-connected 
network. 

2. The matrices r
k 1+A , r

k 1+B  and r
k 1+C  are formed for the 

stk 1+  network with 12L ports. 
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3. At the junction between the thk  and stk 1+  networks, 
because of the reduced number of input ports, it is 
necessary to get only voltage vector k

T 2,2U  from vector 
k
T2U  and matrix k

22Z  from matrix k
T2Z  (Eqs. (10) and 

(8)). The voltage vector 1
2,2

+k
TU  and impedance matrix 

1
2,2

+k
TZ  are calculated from relations (16) and (17). 

4. For the further calculation, Kkk ,...,3,2 ++ , it is 

assumed 1
2,2

1
2
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T

k
T ZZ  and 1

2,2
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2
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T
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relations (3) and (4) can be used for solving the rest of the 
networks in the network cascade connection. 

 
III. ETS VOLTAGE AND IMPEDANCE CALCULATION 

– A COMPLEX CASE 

Solving procedure described in previously chapter can be 
also applied to complex network connections, as shown in 
Fig.3. The networks 1 and 2 are connected at the output ports 
of ETS with voltage k

T2U  and impedance k
T2Z . Number of 

ports for those networks are 12L  and 22L , respectively, 
where 11 +−= mnL  and 12 +−= pqL . 
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Fig. 3.  Connection between the thk  network and 

the stk 1+  networks 1 and 2. 
 
 

Solving procedure for this case is: 
 

1. The voltage vector obtained by the equation (3) can be 
divided in the form  
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2. The next matrices are formed for both stk 1+  networks 
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3. The impedance matrix given by (7) after the 
corresponding reduction is 
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4. The voltage vector k

T 2,2U  in the relation (16) is 
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and impedance matrix k
T

k
222 ZZ = , where k

T2Z  is defined 
with (23). The voltage vector  
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and 1
2,2

+k
TZ  are calculated from the relations (16) and 

(17). 
5. For the other networks in cascade connection till the 

outputs of networks 1 and 2 the relations (3) and (4) are 
used. 

V. EXAMPLE 

Consider a cascade-connected transmission lines on a 
mµ100  GaAs substrate with 9.12=εr . Transmission lines 

are terminated in impedances Ω50=SZ  at input ports and in 
impedances Ω150=LZ  at output ports as shown in Fig.4. 
This system can be treated as impedance transformers with 
different number of sections in cascade connection. Two cases 
are observed:  

 
Case I: Three cascade-connected microstip lines of equal  

lengths md µ1000=  and different reduced widths 
mw µ5001 = , mw µ2502 =  and  mw µ503 = . 

Case II: Six cascade-connected microstrip lines of equal 
lengths md µ500=  and different reduced widths 

mw µ5001 = , mw µ4002 = , mw µ3503 = , 
mw µ2504 = , mw µ1505 =  and  mw µ506 = . 
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Fig. 4. Cascade connection of three microstrip lines 

of different reduced widths. 
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In both cases first line is terminated in impedances SZ  at 
input ports and the last line is terminated in impedances LZ  
at output ports. The lines except the last one in both cases are 
analysed as open ended lines. For these lines the input 
voltages and impedances are corresponding ETS voltages 

2,2TU  and impedances 2,2TZ . The voltages 2,2TU  for the 
last line are real voltages at loads impedances LZ . Lines are 
segmented arbitrary. 

Scattering parameters of the sources and loads are 
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where inZ  and outZ  are input and output impedances, 
respectively. These impedances are calculated as in reference 
[1]. Here, we observe magnitude of scattering parameters 11S  
and 22S  for different number of sections in cascade. Figs. 5 
and 6 show the magnitude of scattering parameters 11S  and 

22S  versus frequency, respectively. Cascade connection of six 
microstrip lines gives better results in wider frequency band 
than cascade connection of three microstrip lines. 
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Fig. 5.  Magnitude of the scattering parameter 11S  versus frequency. 
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Fig. 6.  Magnitude of the scattering parameter 22S  versus frequency.

VI. CONCLUSION 

ETS method given in the paper [1] is used for analysis of 
two-dimensional circuit represented as cascade-connected 
networks with equal number of input and output ports [3]. 
Here, it is shown that this method can be implemented for 
analysis of cascade-connected networks with different 
reduced number of ports. The additional relations needed for 
analysis of such two-dimensional circuits are evaluated. To 
verify the solving procedure, two examples of cascade-
connected uniform microstrip lines are given. 

It can be concluded that described analysis procedure can 
be applied to both symmetric and asymmetric connections of 
transmission lines with different lengths and reduced widths. 
The voltage vector and impedance matrix are reduced 
according to the junction, i.e. network connections. 

The next step will be derivation of new algorithm for 
analysis some other types of various tapered microstrip 
transmission lines. 
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