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Abstract - In this paper we will present properties of three 
different model order reduction methods for a control system all 
three applied on FIR filters: Balanced Model Order Reduction 
(BMR), Singular Perturbations Model Reduction (SPR) and 
Optimal Hankel-Norm Approximation (OHA). Also, we will 
discuss influences of group delay error of a reduced filter; pass 
band range, order and sampling frequency on level of reduction. 
In particular we will consider implementation of reduced filter. 
Our results from theoretical approaches will be illustrated by a 
concrete problem. We will show that the order of an FIR filter 
can be reduced by 78% preserving linear phase in pass band. 
The reduced filter is stable linear phase IIR filter, which is an 
essential part in our case of a complex audio system. It requires 
less power consumption than a higher order FIR filter.* 

 
I. INTRODUCTION 

 
The design of linear-phase digital filters has been considered 
in many publications because they allow distortion free 
transmission of signals. It is well known that adequate 
selection of the impulse response of a Finite Impulse 
Response (FIR) filter yields a linear phase characteristic, i. e. 
a constant group delay. The linear phase is one of the main 
advantages of FIR over IIR filters. However, the main 
drawback of FIR filters is their high order with respect to IIR 
filters, which have an equivalent magnitude response 
characteristic. A high filter dimensionality has two 
disadvantages: a long signal delay and high power 
consumption. The model order reduction techniques offer a 
solution for designing low order filter preserving amplitude 
and phase characteristics in the pass band of an original high 
order filter. These techniques can be grouped in two 
approaches: conventional and techniques converting FIR into 
IIR filters. Using the conventional technique an IIR filter is 
designed satisfying the magnitude specifications while 
ignoring the group delay. Then an all pass equalizer is 
designed and connected in cascade with the IIR filter to 
linearize the phase response [1], [2]. The three techniques, 
which we are going to discuss, are based on obtaining IIR 
filters from designed FIR filters, while simultaneously 
maintaining magnitude and phase characteristics in pass band 
[3]. 
Various techniques of model reduction, which belong to the 
second group, have been proposed in technical literature [4]-
[6]. For reducing the order we revert to the known model 
reduction techniques such as Balanced Model Order 
Reduction (BMR) [4], Singular Perturbations Model 
Reduction (SPR) [5] and Optimal Hankel-Norm 
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Approximation (OHA) [6]. These techniques are based upon 
obtaining a balanced realization of the original system, and 
then removing the weakly controllable and observable states 
[7]. All of these techniques transform high order FIR into low 
order IIR filters, which have the original magnitude response 
specification while maintaining a linear phase response in the 
pass band. Some of these techniques give better 
approximation of the FIR filter prototype at low frequencies, 
whereas others give better approximation at high frequencies. 
For the design of highly selective filters, it is therefore 
important that the error of approximation is small for all 
frequencies, especially in the transition band. 
This paper is organized as follows. In the second section we 
briefly describe distinctive properties of all above mentioned 
reduction techniques. In some supplements, these different 
properties are characterized and evaluated by the magnitude 
error between reduced and original filter using various 
mathematical norms. Most representative norms are Hankel 
and L∞  norm, which show whether two systems are close or 
far apart. Here, we present our conclusions derived from a 
mathematical approach to this two norms. The results that we 
achieved are exhibited also in the second section. 
Furthermore, we discuss the influence of group delay error, 
extent of a pass band, order of an FIR filter and selected 
sampling frequency on the freedom of reduction in the third 
section. 
In the section four we discuss implementation of reduced IIR 
filter. The main concern is the performance of the digital filter 
in finite word length implementation on one hand and the 
computational complexity of implementation on the other 
hand. Therefore, finite word length implementation of IIR 
filters can cause bad scaling, so that quantization noise is 
high. Further, high quantization noise leads to limit cycle 
oscillations. The scaling problem can be avoided by using low 
coefficient sensitivity filters [12]. These filters have very low 
quantization noise, so that they are limit cycle oscillation free 
filters. The structure that have a reasonably low coefficients 
sensitivity and a low round off noise level is parallel 
combination of two all-pass filters which sum is low pass and 
difference high pass filter. The decomposition of IIR filters 
into two all pass filters is one possible solution that we 
discuss. 
As an interesting prototype application of model reduction 
techniques, we gave our suggested concept for digital class-D 
audio power amplifiers (ZePoC), showed in figure 1, that was 
developed in our laboratory [8], [9]. This concept includes a 
new coding algorithm such that audio signals can be encoded 
in binary signals. Because of precise output signals that were 
desired we used high order FIR filters for our digital 
implementation of ZePoC. These filters satisfied expectation, 
but from aspect of energy consumption and signal delay we  
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where ( )BMR

rG z  is the z-domain transfer function of the 
reduced filter that is obtained using the BMR method. 
Equation (6) exposes the maximum absolute value of the 
frequency response, with respect to the Hankel-norm. For the 
same model order reduction method (BMR), equation (7) 
exposes upper limit of the magnitude error as the double sum 
of the HSVs related to the rejected states, with respect to the 
L∞  norm. It is clear that the expected upper limit of 
magnitude error for the BMR method is higher than for the 
OHA method observing the L∞  norm. Furthermore, it is 
expected that in most cases the upper limit of the Hankel norm 
for the OHA method is higher than the exact value of the 
same for the BMR method. However, experience has shown 
that these expectations are not always satisfied. Comparing 
the right sides of equations (4) and (6), we come up with 
conclusion that the OHA method provides a reduced filter 
with a smaller error than the BMR method only when the 
magnitude error || ( ) ( ) ||BMR

r HG z G z−  belongs to the 
interval 
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method can give a reduced filter with lower error. This 
problem is also discussed in [13], but from different approach 
and different conclusions are given, which do not exclude our 
results. Also, the obtained results in [13] are an integral part of 
our conclusion. 
The last model reduction technique, which we used for 
approximation an FIR filter by IIR, was the Singular 
Perturbations Model Reduction (SPR). This method avoids 
computing the balancing transformation, which could run into 
numerical problems arising from singular matrices for very 
similar HSVs. A starting point for reduction is Lyapunov 
equation 
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where COW  is the cross-Grammian matrix that is defined as: 
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determination the large and small (in magnitude) eigenvalues 
of the cross-Grammian matrix. These eigenvalues are 

significant for singular perturbational and truncated 
approaches, which are part of the SPR method. Indeed, the 
singular perturbation approach is used for the determination of 
a suitable decomposition of a system into weakly and strongly 
coupled subsystems, where the weakly coupled subsystem is 
eliminated. 
For all mentioned model reduction techniques it is common 
that stability can be guaranteed if the full order model is 
stable. A more detailed discussion about stability of reduced 
system was shown by Silverman [14]. 
 

III. INFLUENCES OF DIFFERENT  
PARAMETERS ON REDUCTION 

 
The quality of the magnitude and phase response of a reduced 
IIR filter can be evaluated by the magnitude response error 
and the group delay error. The magnitude response error we 
already discussed in the previous section. Further, we are 
going to discuss group delay error of a reduced filter, 
influences of pass band range, order and sampling frequency 
on level of reduction. Each of these parameters are observed 
when all other are fixed and do not have influence on 
reduction. For a concrete problem it is hard to isolate 
influence of one parameter because all mentioned parameters 
are correlated between each other so that influence of one can 
be annulled by the influence of the other one. 
While the reduction methods maintain the magnitude 
specifications, each exhibits an approximately linear phase 
characteristic in pass band. As a measure of the phase linearity 
we use the group delay 
 

,d
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where ϕ  is phase of a filter. A linear phase filter satisfies  
 

0;constϕ τ= ⇒ =                   (11) 
 
and 
 

max min 0,τ τ τ∆ = − =                  (12) 
 
where τ∆  is group delay error, minτ  and maxτ  are minimal 
and maximal group delay values. For an optimal reduced filter 
the approximately linear phase 0τ∆ ≈  is satisfied in pass 
band. Evidently, the value of τ∆  gives a measure for phase 
linearity. If the value of τ∆  is close to zero the phase is more 
linear. It was shown through many examples that the pass 
band group delay error of reduced filters, which are received 
by the OHA and the BMR methods, are independent of the 
frequency. For this reason they are not directly involved in 
discussions of relation between pass band extent and the level 
of reduction. However, for the SPR method ripple shape 
deviation ascends with frequency. This leads to the conclusion 
that the SPR method is less effective over significantly large 
frequency bands, because the phase linearity decreases with 
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increasing frequency. Thus, for filter with large frequency 
bands we can expect better results from the other two 
methods. 
Generally, a broader pass band is connected with a lower level 
of reduction whereas a smaller pass band leads to a higher 
reduction. The reason is that the linear phase is very important 
in pass band but not in stop band, so that a small pass band 
has additional degrees of freedom for reduction. In other 
words, everything that has minor influence on linear phase in 
pass band can be removed from original filter. 
Further, the order of an FIR filter has significant influence on 
reduction. The reason lies in structure of reduced IIR filter. 
This filter has a parallel structure and two times more 
coefficients than its order is. It is very important for us that the 
number of coefficients is small, so that we would not have to 
implement more coefficients than for the FIR filter. This is 
possible only if the order of an FIR filter is reduced for at least 
50%. Filters with very low order are hard to be reduced more 
than 50%, because degree of freedom for reduction is 
proportional to the order of a filter. 
However, the reduction of FIR filter is not subordinated to a 
sampling frequency. We can assert that increasing the 
sampling frequency the order of an FIR filter with respect to 
desired specifications is also increased for the same factor k  
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where Nf  and nf  are sampling frequencies of two FIR 

filters with order N  and n . If the sampling frequency is 
increased for factor k , see equation (13), the number of 
HSVs is increased for N n− , because the number of HSVs 
and order of a FIR filter are the same. Further, the pass band 
has unchangeable range because pass- and stop band edges are 
steady. However, increasing sampling frequency stop band is 
increased. The pass band and previous stop band are described 
by existing HSVs, so that "new" HSVs describe broadened 
stop band and do not change previous N  HSVs. They are 
smaller than bσ  and can be removed during reduction. This 
means that reduced IIR filters, obtained from FIR filters, with 
sampling frequencies Nf  and nf  have same orders if all 
other properties are equal. 
 
We will show using filter from ZePoC, figure 1, marked by 
double circles, that changing sampling frequency the order of 
the FIR filter is changed but not the order of the reduced IIR 
filter. The selected FIR filter has following specifications: 
stop band suppression of 100dB−  and a cut-off frequency 
of 48kHz . The sampling frequency varies between 
200kHz  and 800kHz , what gives the order of the FIR 
filter between 88  and 352  for the same specifications, table 
1. This filter is for each selected sampling frequency reduced 

on order 37 . (We chose SPR method for reduction.) The 
group delay error τ∆  is similar for all reduced filters and 
very small what gives linear phase in pass band. By figure 2 is 
presented how order FIRN  of the selected FIR and the 

reduced IIR filter IIRN  depend on sampling frequency sf . 
The order of the FIR filter linear increases with sampling 
frequency but of the reduced IIR is constant. 
 

TABLE I 
SUMMARY OF ORDERS AND SAMPLING FREQUENCY OF THE FIR 

AND REDUCED IIR FILTERS. 
 

[ ]sf kHz  200 384 600 800 

FIRN  88 170 264 352 

IIRN  37 37 37 37 
6[ ] 10tsτ −∆ × 1.088 0.594 1.203 1.577 

 
 

 
 
Fig. 2: Relation between order of the FIR and the reduced IIR filter 

and sampling frequency. 
 
 

IV. LOW SENSITIVITY DIGITAL  
FILTER STRUCTURE 

 
A digital filter implementation either by software or using 
hardware is different from its idealized design due to the 
available finite word-length for representing the multiplier 
coefficients. A low-sensitivity structure is very close to an 
ideal infinite-precision implementation. This structure is 
characterized by very small quantization noise related to 
quantized multiplier coefficients. Further, for these structures 
a parameter quantization can be chosen on that way that 
stability be guaranteed. One of many low-sensitivity 
structures is the all-pass section, shown in figure 3. This 
section exhibits very low pass band sensitivity and can be 
design to be free from parasitic oscillations [15], [17]. Also, 
the desired degree of phase linearity can be structurally 
incorporated. If one of the all-pass branches in the all-pass 
sum contains only delay elements, then the all-pass sum 
exhibits approximately linear phase in the pass band [17]. 
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Figure 3: Low pass 1( )Y z  and high pass 2 ( )Y z  IIR filters 

presented as an all-pass sum. ( )aH z  and ( )bH z  are all-pass 
filters. 

 
For reduced IIR filter implementation we use the property of 
low and high pass filters that those can be constructed using a 
parallel interconnection of two all-pass sections. For 
decomposition of low pass into two all pass filters, a 
complementary high pass filter is required, and other way 
around. In this case each all pass filter in branch has two times 
less order than the reduced one. Because of its parallel 
structure this decomposition gives much faster system with 
the same number of delay elements.   
The question about linear phase filter presentation as an all-
pass sum is opened. There are few proved theorems, which 
state that linear phase filters satisfy all conditions for this 
decomposition [18], [19]. The main property of transfer 
function of linear phase filters is symmetry or antisymmetry 
of its coefficients. The coefficients of any reduced IIR filter 
are not verbatim symmetric or antisymmetric, because of 
complex mathematical transformations that are applied to 
satisfied the phase linearity in pass band but not coefficients 
symmetry. However, reduced IIR filter has linear phase even 
the coefficients are not symmetric or antisymmetric. Thus, we 
can assert that if the transfer function of some filter has 
symmetric or antisymmetric coefficients than that filter has 
linear phase [16], but if some filter has linear phase it does not 
lead automatically to symmetric or antisymmetric coefficients. 
Because of this, the problem of implementation of reduced 
filter as low-sensitivity structure is not easy. For each separate 
case it is important reverting on basic low-sensitivity 
structures as that are lattice structures [17]. 
 

V. EXAMPLE DESIGNS 
 
This section outlines a prototype FIR filter from the ZePoC 
system, as shown in figure 1, with required specifications and 
reduction of the resulting prototype to a lower order IIR filter 
using each of the presented techniques. The ZePoC system 
includes six filters, marked by circles in figure 1. As an 
example for reduction we choose the filter with the highest 
order and the following specifications: a pass band accuracy 
equivalent to 16  bits of resolution, a stop band suppression of 

100dB− , a cut-off frequency of 48kHz  and a sampling 
rate of 384kHz . The resulting FIR filter is of the order 170 . 
For selected boundary error the HSV bσ  is linked with the 

order 37 , see figure 4, what gives order of the reduced IIR 
filter. Described model reduction techniques reduce the FIR 

filter of order 170  into three IIR filters of order 37 . The 
reduced filters have different magnitude and phase 
characteristics. We are going to compare the results of 
reduction, through magnitude response error and group delay 
error.  
 

 
Fig. 4: Hankel singular values of FIR filter, 170N = . 

 
The IIR filter, obtained using the SPR technique, has the 
smallest magnitude response error maintaining almost linear 
phase in pass band, see figures 5 and 6. Also, poles and zeros 
of the reduced filter are exhibited in figure 7. Positions of 
poles show that the reduced filter is stable. The general 
opinion that IIR filters cannot be stable and have a linear 
phase at the same time is inaccurate, especially if that filter is 
obtained from an FIR filter using reduction methods, [20]. 

 
 
 

Figure 5: Magnitude response error, for the SPR method. 

 
 

Figure 6: Pass-band group delay error shows existing ripple shape 
deviation from exact linearity in pass-band, for the SPR method. 
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Figure 7:  Position of poles and zeros in z plane presentation 

of the reduced IIR filter using the SPR method. 
 
 

 
 

Figure 8:  Magnitude response error, for the OHA method. 
 
The results achieved by the other two methods are also 
interesting. As figure 8 shows, the error magnitude of the 
OHA is almost flat, with the gain around 107dB− . Similar 
result is calculated by the Hankel-norm 1 107.66k dBσ + ≅ − , 
equation (4). Similarity of these two results confirms that only 
the "weak" states of the FIR filter were reduced. A better 
result is achieved by the BMR method, because a smaller 
magnitude error in the pass band is obtained, figure 9. For this 
method the magnitude error with respect to the Hankel and 
L∞  norms do not reach the upper limit: 

1
2 60.88

n

i
i k

dBσ
= +

≅ −∑ , equation (6). The magnitude error in 

the pass band is around 137dB− ; figure 9, what is out of 
range ( 107.66 , 60.88 ]dB dB− −  calculated as in (8). This 
result confirms the conclusion from the second section, where 
we discussed properties of different model reduction 
techniques. 
 

 
 

Figure 9:  Magnitude response error, for the BMR method. 
 

 
 
Figure 10: Pass-band group delay error shows existing ripple shape 
deviation from exact linearity in pass-band, for the OHA method. 

 

 
 
Figure 11: Pass-band group delay error shows existing ripple shape 
deviation from exact linearity in pass-band, for the BMR method. 

 
Analyzing group delay error the SPR method shows a very 
small deviation of phase linearity, figure 6. This deviation 
ascends with frequency, but for the represented filter it is 
imperceptible, because of small pass band. The pass band 
group delay errors of the IIR filters, which are received by the 
OHA and the BMR methods, do not depend on frequency in 
the pass band, figures 10 and 11. The existing ripple shape 
deviation from exact linearity is bigger for these two methods 
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than for the SPR. τ∆  from equation (10) is closer to 0  for 
the SPR method than for OHA and BMR, so that the phase is 
more linear for the filter obtained by the SPR than by the 
other two methods, see figures 6, 10, 11. Also, this method 
does not lead to numerical problems, what is typical for the 
OHA method. The obtained IIR filter has linear phase, so that 
implementation as low-sensitive structure is easier than for 
filters with phase ripple [21]. 
 

VI. CONCLUSION 
 

Through our discussion of reducing the order of an FIR digital 
filter, we expounded properties of the three standard model 
order reduction techniques. All three models order reduction 
methods transform high order FIR into low order IIR filters. 
The linear phase is preserved during the conversion from FIR 
into IIR filter. Further, we discussed the influence of different 
parameters group delay error; pass band range, order and 
sampling frequency on decreasing the order of an FIR filter. 
All presented model order reduction techniques meet the 
magnitude specifications of original FIR filter but differ in 
phase linearity. This is the reason for choosing the phase 
linearity as the reference for quality of reduction. We showed 
that the SPR method produces the smallest error in phase 
linearity; which increases with frequency. The phase linearity 
of the BMR and SPR methods is indifferent to frequency in 
the pass band. For this reason the SPR method is more 
applicable for filters with small pass-band than the two other 
methods. The SPR method also showed the best results for 
presented ZePoC system. However the hardware 
implementation of reduced IIR filter can be more complex 
than for the original FIR filter. In order to reduce design 
complexity, the reduced IIR filter can be decomposed in two 
all-pass sections. Hence, the signal delay can be reduced and 
coefficients with low sensitivity can be implemented, so that 
the resulting filter is a limit cycle oscillation free filter. Using 
all-pass sections an implementation of the reduced IIR filter 
can be facilitated.  
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