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Abstract – This paper examines the numerical techniques used 

to model aspects of EMC and photonics design. A short review of 
popular numerical techniques will be given and recent 
developments in several areas will be examined, including the 
description of fine wires, complex material properties, optical 
modulators and the use of unstructured meshes. 
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I. INTRODUCTION 
 
The modelling of electromagnetic problems can be of great 

benefit over a wide range of applications. Two areas in 
particular where the use of numerical techniques at the design 
stage can lead to time and cost savings are Electromagnetic 
Compatibility (EMC) and the development of photonic 
components. In these areas, time domain modelling 
techniques such as Transmission Line Modelling (TLM) [1] 
and Finite Difference Time Domain modelling (FDTD) [2] 
have proved to be flexible and powerful tools. Finite Element 
modelling [3] and the Method of Moments [4] are also 
frequently used techniques. In photonics modelling it is often 
sufficient to model the slowly varying envelope without 
explicitly modelling the rapidly varying aspects of the 
electromagnetic field. The Finite Difference Beam 
Propagation Method (FD-BPM) [5] is the most widely used 
method in this area. For some configurations, when certain 
approximations are valid, other techniques such as the 
Spectral Index (SI) [6] method or the Free Space Radiation 
Mode Method (FSRM) [7] can be used to improve the speed 
of the calculation. More recently Integral Equations 
Formulations in both frequency [8] and time [9] domains have 
proved highly effective when applied to the simulation of a 
wide range of photonics structures. 

Despite the rapid increase in computer performance over 
the years there are several areas of electromagnetic simulation 
that cannot be fully investigated. Multi-scale problems in 
EMC such as fine wires in equipment cabinets, thin panels, 
fine conducting tracks and other small features cannot be 
efficiently modelled without making modifications to the 
standard techniques. The fine grid required to describe all the 
fine features in a relatively large problem would need an 
impractically large amount of memory and processor time to 
be of use. Both TLM and FDTD allow the use of more 
efficient  techniques  such  as  finding a local  solution  for the  
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field around the fine feature and mapping this onto the global 
problem or distorting the numerical   grid   around the fine 
feature to give an accurate description of this feature without 
having to finely grid the rest of the problem. These techniques 
will be described more fully in this paper. 

One recent advance that has improved the modelling of fine 
features is the use of unstructured triangular meshes in TLM 
rather than rectangular meshes [10]. Triangular meshes can 
improve models in several areas. Some examples are as an 
interface between fine and course meshes in a multi-scale 
problem and to give a better description of areas of a problem 
that are not rectangular in shape [11]. More details of these 
will also be given in this paper.  

Another aspect of TLM that will be described here is its use 
to investigate the response of materials. Time domain 
techniques such as TLM and FDTD are of particular use when 
describing the interaction of electromagnetic waves and 
materials because a single simulation can be used to study the 
material response over a wide bandwidth. Using frequency 
domain techniques several simulations would be required to 
cover the same bandwidth. TLM is particularly well suited to 
studying materials with frequency dependent or nonlinear 
properties as well as anisotropic materials. Some of the work 
done in this area will be described in section III (C).  

Several areas of Electromagnetic modelling involve the 
description of more than one signal type. An example of this 
is an optical modulator. In these devices a microwave signal is 
used to modulate an optical signal. The design of these 
devices requires the accurate modelling of both the 
microwave and optical responses of the device to optimise the 
design. Section III (D) describes the use of the TLM method 
in the design of an electroabsorption modulator. 

Finally a description of the use of FD-BPM to model and 
optimise photonics components such as tapered laser cavities 
will be given. 

This paper contains a review of some of the numerical 
techniques developed and used by members of the George 
Green Institute for Electromagnetics Research, University of 
Nottingham. These include TLM, and FD-BPM. There 
follows specific examples of practical areas where these 
techniques have been used and conclusions. 

 
II. NUMERICAL TECHNIQUES 

 
This section will give a brief description of some of the 

numerical techniques used in computational electromagnetics, 
including Transmission Line Method (TLM), and the Finite 
Difference Beam Propagation Method (FD-BPM). 
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A. Transmission Line Modelling 
 
TLM is a method of solving Maxwell’s equations, which 

may be expressed as  
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The constitutive relations for the current and voltage 

densities for isotropic media are given by, 
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where * indicates a time-domain convolution. The 

constitutive relations for the flux densities are given by, 
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substituting (2) and (3) in (1) gives, 
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The electric and magnetic fields along with the current and 

voltage densities are then normalised to have the dimension 
volts. A TLM cell with dimensions lzyz ∆=∆=∆=∆ is 
chosen as shown in Fig 1. Although this cell does not have to 
be cubical, a cubic node is considered here for simplicity. 
Following normalisation the electric and magnetic fields 
become 
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where l∆ is a space step and 0η is the intrinsic impedance of 
free space. Similarly the electric and magnetic free-current 
densities are also normalised to quantities with the dimension 
volts  
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the time and space derivatives are also normalised. 
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Where the maximum time step for the TLM algorithm is 
given by [1] 
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where c is the speed of light in vacuum. The free-space 
permittivity and permeability are included in the model 
through the transmission line capacitance and inductance 
respectively 
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Fig. 1. 3-D TLM Cell 

After these normalisations Maxwell’s equations in free 
space become 
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This equation is mapped onto the cell shown in Fig 1. The 

curl equations can then be calculated using Stoke’s theorem. 
For example 
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The total voltages can be obtained from the incident 

voltages to the cell, i.e. z
i iVV −= 44 2  where, 
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where i indicates an incident voltage. 
 
Equation (9) can now be expressed as, 
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The reflected pulses are given by [12] 
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The incident voltages for the next time steps are found by 

swapping with the reflected voltages from the previous time 
step, i.e. the swap between ports 0 and 1 of the cells z  and 

1−z as the time step goes from k to k+1 is given by, 
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At a boundary of the mesh a reflection coefficient is used to 

simulate different types of boundary such as a perfect electric 
conductor or a perfect magnetic conductor. TLM is a powerful 
tool for the modelling of electromagnetic problems. Later in 
this paper it is used to model, EMC problems containing thin 
wires, materials and electroabsorption modulators. 

 
B. Finite Difference Time Domain Method 
 
Like the TLM method described above the Finite 

Difference Time Domain method (FDTD) directly solves 
Maxwell’s equations (see equation (1) in the previous 
section). The derivatives in the equations are replaced by 
finite differences. Unlike the TLM method in FDTD the 
electric and magnetic fields are not calculated at the same 
points in time and space. They are separated by half a time 
and space step.  

For example in the one dimensional case, in free space, 
Maxwell’s equations become. 
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Using the central difference approximation for the spatial 
and temporal derivatives these equations become, 
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From these equations it can be seen that the electric and 
magnetic fields have been separated in both time and space by 
half a step. The equations can be extended to the 3D case. 

 
C.    Finite Difference Beam Propagation Method 
 
The Finite Difference Beam Propagation Method (FD-

BPM) is one of the most widely used techniques in photonics. 
It is used to solve the Helmholtz equation shown below.  
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The basis of this method is to replace the partial derivatives 

in this equation with corresponding finite differences. Unlike 
the TLM and the FDTD methods described above this 
technique does not directly describe the electric and magnetic 
fields. Instead the fields are assumed to diverge slowly along a 
chosen axis of propagation. The field is therefore split into the 
envelope and a term that represents the propagation and only 
the envelope is modelled, 
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where cknk /, 000 ωβ == with n0 being a suitably chosen 
background refractive index. 

This expression can be substituted back into equation (19). 
The partial differentials are then replaced by finite differences 
and can therefore be solved numerically. One difficulty for 
BPM is that a large matrix problem needs to be solved for 
each propagation step. This is particularly true in the 3-D 
case. Alternating direction implicit (ADI) schemes are 
typically used for 3D problems 

In the section III (E) of this paper we look at the use of a 
wide-angle beam propagation method [13] to model tapered 
laser cavities. Techniques such as this are required because 
the traditional BPM is limited in the angular range of the 
principal propagation distance [14]. For simplicity, the wide 
angled schemes are described for the 2 dimensional case. The 
equation for the slowly varying envelope is then given by, 
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This equation can factorised, 
 



November, 2004 Microwave Review   
 

19 

01

1

=





 +−−

∂
∂

•







 ++−

∂
∂

φββ

ββ

Xjj
z

Xjj
z    (22) 

where 00 nk=β . Considering only the forward waves this 
equation becomes, 
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Different approximations to the operator X+1 lead to 

different BPMs. One of the most common is to use the higher 
order rational Padé equation [15] 
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where ( )XNm and ( )XDn  are polynomials of degree m and 
n respectively. 

One method of computing equation (25) in an efficient 
manner that is valid for wide-angle propagation is to use a 
Padé series expansion. Full details can be found in [15]. The 
use of the FD-BPM method to describe the optical properties 
of a tapered waveguide laser will be described in section 
III(E). 
 

D.   Semi-analytical Methods 
 
In some cases the problem can be further simplified if the 

system being investigated meets certain criteria. For example 
the Spectral Index (SI) method [6] and Half Space Radiation 
Mode (HSRM) [16] can be used where a low refractive index 
(i.e. air) is used in a structure. The Free Space Radiation 
Mode (FSRM) [3] method can be used when the variation in 
the transverse refractive index is less than 10%.  

In the SI method the semiconductor-air boundary is 
replaced by a polarisation dependent evanescent boundary at 
which the field set to zero. Exact solutions are then found for 
the field in both the rib region and the substrate region. These 
solutions are matched along the boundary using a variational 
principle, i.e. minimising the difference in the derivatives of 
the field across the boundary. This gives a simple 
transcendental Eigenvalue equation for the longitudinal 
propagation constant β. [17] 
 

III. APPLICATIONS 
 

In this section we examine some current applications of the 
numerical techniques listed above as well as some of the more 
recent developments that have improved the range of 
applications.  Firstly, the use of TLM to describe fine features 

such as thin wires will be examined. There follows sections on 
triangular meshes, materials and electroabsorption 
modulators. This latter problem involves the description of 
both microwave and optical signals. Finally there will be an 
application of FD-BPM to model the optical properties of 
tapered laser cavities. 

 
A. Description of fine wires 
 
Modelling of electromagnetic problems where all features 

are of the same scale is relatively simple. A standard, regular 
Cartesian grid can be used to discritise the problem and the 
calculations can be carried out using a numerical technique 
such as TLM of FDTD as described above. Difficulties arise 
when different length scales are involved in the problem, such 
as a large equipment cabinet that contains fine wires. It is 
impractical to reduce the size of the mesh throughout the 
cabinet to the length scale of the wire due to the 
computational time and memory required. 

One method used to describe small features is to distort the 
mesh locally. Various methods of doing this have been 
investigated for both FDTD and TLM. The two main ways are 
given in Fig 2. This shows a standard mesh, a multi-grid 
mesh, which is a localised refinement of the mesh and a 
hybrid mesh. In the hybrid mesh the grid refinement is still 
localised, but stretches to the edges of the grid.  

 
 
 
 
 
 
 
 

    (a)           (b)                (c) 
Fig 2. Various types of mesh for TLM calculations (a) regular 

mesh, (b) multigrid mesh, (c) hybrid mesh 
 

In these schemes computational efficiency is maintained 
because the mesh is only refined locally. This is particularly 
true in 2 (b). However there are problems with this method as 
at the interface between the coarse and fine grids the 
information is available at a different temporal and spatial 
granularity from the two grids. This means that the 
information from the fine grid has to be averaged to allow it to 
be transferred to the coarse grid.  

There have been many methods used to interface between 
the coarse and fine grids in both FDTD [18,19,20,21,22,23] 
and TLM [24,25,26,27] calculations. The methods used in the 
above references all aim to reduce reflections and increase 
stability at the boundary. As an equivalent circuit field 
representation TLM should have guaranteed stability as long 
as the interface can be represented as a passive lossless circuit. 
This means that charge and energy are conserved and no 
reflections or delays are present. In practice stable methods 
can be devised with some energy loss at high frequencies. A 
comparison between the FDTD and TLM methods in ref [28] 
suggests that the TLM method is the more robust. The use of 
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triangular meshes as an interface will be discussed in section 
B. 

A more elegant solution, than simply reducing the mesh 
size locally is to find a local solution for the field around a 
thin wire and map it onto the mesh. This can be done in 
several ways in FDTD [29, 30, 31] and TLM [32, 33]. 

Recent developments have included obtaining an exact 
analytical description of the electromagnetic fields that can 
then be modelled numerically [34, 35]. This allows accurate 
modelling of an arbitrarily placed thin wire in a coarse mesh.  

In this method the electromagnetic field around the wire is 
described in cylindrical co-ordinates using Bessel ( )rkJ 0  and 
Neumann functions ( )rkN 0

. 
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substituting into (26) gives 
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This then represents the fields around the wire, exactly, as a 
superposition of cylindrical wave modal solutions. These 
exact solutions are then mapped onto the coarse mesh taking 
into account the position of the wire. This mapping requires 
the use of known summation theorems for Bessel functions 
[36], i.e. if ( ) ( ) ( )xbNxaJxZ mmm +=  with a and b 
independent of m and x.  
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where ( ) 00
2

0
2 ,,cos2 rrrrrrR φ−+= are sides of a 

triangle with φ the angle between r and 0r , ϕ  is the angle 
between 0r and .R Fig 3 shows an offset wire on a two 
dimensional TLM node, the field expansions around the wire 
can be mapped evaluated at the required positions 
( )3210 ,,, VVVV on the TLM node. 

Numerical results for this technique show good agreement 
with analytical results for both centred and offset wires. 
Excellent accuracy of this method was found for a broad 
range of frequencies and the method can predict the small 

phase changes in the reflected field when a wire is offset. A 
similar technique has been formulated to describe thin wires 
in 3D [37] 

        
Fig. 3. Offset wire on a 2D TLM node 

 
B. Triangular meshes 
 
A recent development that has provided a new way to 

interface between coarse and fine meshes is the use of 
triangular meshes. Standard meshes used in two dimensional 
TLM and FDTD are based on rectangles with 4 ports to each 
node, i.e. the node consists of two transmission lines meeting 
at a right angle. In triangular meshes three transmission lines 
are present giving three ports [10, 11]. This gives greater 
flexibility to conform to curved boundaries and can be 
exploited to interface between regions of the mesh with 
different spatial and temporal resolution 

The parameters of a triangular node (shown in Fig 4) are 
not entirely arbitrary and must meet the Delaunay criterion 
[38]. This is common to many unstructured mesh techniques 
and is not difficult to enforce. Meshes of this type are 
available from standard meshing software. 
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Fig. 4. Schematic of a triangular TLM node 

The equivalent circuit parameters of the transmission line 
network shown above and the electric and magnetic fields are 
found by expanding the field around the node centre in 
cylindrical harmonics. This is similar to the method described 
above for the thin wire calculations. From the expansion the 
field modal impedances E/H can be calculated and a network 
that produces the same modal impedances, V/I, can be 
constructed. The equivalences calculated in this way are valid 
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up to a maximum frequency of maxf corresponding to a spatial 
resolution of 10/minλ . The transmission lines in Fig 4 have 
total inductances and capacitances given by; 
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, 00 =
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= i
l
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l

L ii
i

i

i
i
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where il  is the length of the triangle side that i∆  passes 
through. Link and stub lines can be combined to model the 
required inductance and capacitance. 

 

OpB 

OpA

 
 

Fig 5. Multi-grid Rectangular TLM stitched together with 
triangular TLM nodes 

 
In order to test the triangular meshes the example given in 

Fig 5 was modelled in reference [10]. This problem has a 
coarse mesh surrounding an area with a fine mesh (ratio 2:1). 
The interface between the two meshes is created using 
triangular nodes. A pulse is injected at the point (0,0) and the 
output field at both OpA and OpB is examined. For 
comparison, the case where just a coarse mesh is used was 
also calculated.  

Fig 6 shows the relative error against normalised frequency 
at both OpA and OpB. The relative error is always less than 
1%. It is possible to use the same technique where there is a 
greater difference between the coarse and fine meshes. 
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Fig 6. Results for the example shown in Fig 5 showing relative 
error in frequency domain at OpA and OpB 

 

The use of triangular meshes can provide a stable and 
efficient interface between coarse and fine meshes which is of 
great importance in multiscale problems. Triangular meshes 
can also be used to give a variable mesh size across an entire 
structure and can be used to give more accurate meshing of 
shapes that do not fit well with Cartesian meshes such as 
curved surfaces. 

C. Materials 
 
Time domain techniques such as FDTD and TLM are 

particularly well suited to the modelling of the interaction 
between materials and electromagnetic waves. By using a 
pulse excitation the response of a material over a wide 
bandwidth can be obtained in a single simulation. For 
frequency domain simulations many calculations would be 
required to obtain the same information.  In order for the 
solution to be valid over the wide bandwidth the frequency 
response of the material must be included in the algorithm. 
Time domain techniques are also better able to handle 
nonlinear materials as they can properly describe the 
frequency mixing effects that result in the generation of 
harmonics. 

The advantage of TLM over FDTD in the description of 
materials is that in FDTD the time electric and magnetic fields 
are offset by half a step in both time and space. As a result of 
this, coupling between the fields can only be carried out using 
averaging techniques, however, much work has been done on 
the description of materials using FDTD. In TLM the electric 
and magnetic fields are available in the same time and space.  

The use of Z-transform methods to discritise the 
constitutive relations was first introduced for TLM in [39] 
after first being used with FDTD. It has since been extended 
to anisotropic [40], chiral [41] and nonlinear [42, 43] 
materials. The Z-transform is particularly useful because in 
the Z-domain convolutions become simple multiplications.   
In this paper the technique is reviewed and its use is 
demonstrated. 

In the modelling of materials with TLM the material 
properties are included in the connection process when the 
incident and reflected voltages are swapped between nodes. In 
the method developed in [39] and extended in [40, 41, 42] the 
material properties are contained in a matrix t. For the case of 
an isotropic material, the following matrix applies, 
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For anisotropic materials and nonlinear materials more 
elements of the matrix t are required. The matrix t contains 
terms relating to the electric conductivity, susceptibility and 
coupling terms for the electric elements and the magnetic 
resistivity and susceptibility along with coupling terms for the 
magnetic elements. 

Two examples of the use of this method to model the 
electromagnetic properties of materials are given in this paper. 
Firstly an Air-Lorentz material interface is shown. Fig 7 
shows the field after 737.5ps. The interface is marked on the 
graph by the vertical line at 0.0125m, the initial pulse, on the 
left hand side has been scaled down by a factor of 10. Full 
details are contained in [39]. 
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Fig.7. Air-Lorentz interface showing the field after 737.5ps 

 
Fig. 8 is an illustration of the Faraday rotation where, by 

using four different slab depths illuminated with a sinusoidal 
source of frequency 182GHz, the rotation of a linearly 
polarized wave as it passes through the slab is observed. Full 
details are contained in [40]. 

TLM provides a stable and accurate method of modelling 
the interaction of electromagnetic wave with materials. As it 
is a time domain method results from a single simulation are 
valid over a wide bandwidth and unlike FDTD the electric and 
magnetic fields are available at the same time and space 
leading to a simpler implementation. Further application of 
the Z-transform technique to the simulation of optical 
switches and fibre Bragg gratings, including the effects of 
material dispersion can be found in [44] 
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Fig. 8. Faraday rotation in magnetised plasma, 
 

D. Modelling of the Microwave Properties of 
Electroabsorption Modulators 

 
The RF modulator is a key device in dense wavelength 

division multiplexing (DWDM) and optically time division 
multiplexing systems (OTDM) as it directly determines both 
the operating frequency and the bandwidth of a system. The 
principal function of the modulator is to imprint the 
microwave signal onto the optical carrier. Accurate modelling 
and optimisation of these devices is seen as a way forward in 
increasing the systems’ bandwidth and hence improving 
devices’ performance. However, their modelling remains 
challenging due to the need to simultaneously model two 

different parts of the modulator, namely microwave and 
optical.  

In this paper we concentrate on modelling of microwave 
properties of two different types of electroabsorption (EA) 
modulators namely, lumped EA modulators (L-EAM) based 
on a microstrip line and travelling wave EA modulators (TW-
EAM) based on a coplanar transmission line. In lumped EA 
modulators an applied electric field causes the multiple 
quantum wells (MQWs), embedded in the optical waveguide, 
to change the insertion loss of the optical guide, typically in 
the range of around 15-20 dB/mm and bandwidths as high as 
50 GHz have been reported [45]. The distinctive feature of 
TW modulators is that the modulating electrical signal 
propagates in the same direction and ideally at the same speed 
as the optical signal, causing the phase modulation induced by 
the electrical signal to accumulate along the propagation 
length. TW modulators can further extend the bandwidth of 
the modulator (up to 100 GHz) and are now preferred choice 
for many broadband applications. 

The time domain Transmission-Line Modelling method [1] 
(TLM) is ideally suited for accurate modelling of microwave 
characteristics of EA modulators, taking into account their 
complex geometries and material parameters. The TLM 
method will be used to model the microwave characteristic 
impedance and effective dielectric constant (εeff) of lumped 
and TW EA modulators, and investigate the effect the finite 
metal thickness has on these two microwave parameters.  

The TLM method with the graded mesh [8] is used. This 
allows finer mesh to be applied for modelling of small 
features, namely thin metal layers, the MQW region and 
additional thin layers, while at the same time a coarser mesh is 
used for modelling larger features such as air and the substrate 
region. 

 
                        (a)                                                (b) 
Fig. 9. L-EAM (a) and TW-EAM (b) cross-section geometries. 
 
i. Numerical results 
 
The schematic presentation of the cross-sectional 

geometries of a microwave line of the lumped EA modulator 
and a coplanar waveguide of the TW EA modulator modelled 
in this section are shown in Fig 9. EAMs of similar 
geometries were fabricated and presented in [46, 47]. 

In the Fig 9 parameters n1, n2, and n3 represent refractive 
indices of InP, As doped silica and InGaAsP respectively; te, 
tm, tMQW, ts represent thickness of electrodes, mesa, multiple 
quantum well, and substrate, respectively, and We and Wm are 
widths of the p-electrode and the mesa. The p- and n-
electrodes in Fig 9(b) overlap by 0.6 µm. The TLM method is 
used to investigate the influence of p-electrode width and 
finite electrode thickness on the microwave characteristics of 
the EAMs. 
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Initialisation of both structures is done with a Gaussian 
pulse of duration of 10-14 s. The time dependent currents and 
voltages are then extracted and fast Fourier transformed to 
give the frequency dependent currents and voltages. These are 
then used to calculate the characteristic impedance Zc, 
effective dielectric constant εeff and propagation constant β as  
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where V and I are voltages and currents of the line, c is the 
speed of light, f is the frequency, V1 and V2 are voltage 
spectrums at the distance of z∆ .  

The frequency dependence of the impedance and the 
effective refractive index versus electrode width We for 
lumped and TW EA modulator are shown in Fig 10 (a, b). The 
parameters for the lumped modulator, Fig 9(a), are: n1=3.53, 
n2=1.63, n3=3.68, te=0 or 0.33 µm, tm=2 µm, tMQW=0.33 µm, 
ts=6 µm. The results are shown for electrode width We=8 µm 
(solid lines) and 6 µm (dashed lines).  It can be seen that the 
impedance decreases with increasing of electrode width whilst 
the effective dielectric constant decreases. This behaviour is 
similar to classical microstrip lines [48]. Moreover, values for 
the impedance change about 1% over the region of 150 GHz, 
which is typical of ordinary microstrip lines with InP substrate 
thicknesses of the order of 10 µm.  

Similar behaviour is noticed for the TW EAM geometry 
where the corresponding electrode widths were 10 µm (solid 
lines) and 6 µm (dashed lines), Fig 10(b), whilst all other 
parameters remain the same as for the Fig 10(a). The lumped 
EA geometry considered has impedance close to or higher 
than 50 Ω whilst the TW-EA geometry considered has 
impedances lower than 50 Ω. Thus in both cases specific 
geometries of the modulators pose a problem when matching 
to a 50Ω feed line is required. This effect is more pronounced 
for the TW-EAM geometry. 

As the optical field propagates in the MQW layer, in the 
case of the TW modulator it is required that the velocities of 
the optical and microwave fields are matched which implies 
that the effective dielectric constants of the microwave and 
optical fields are equal. However, the stronger frequency 
dependence of the effective dielectric constant of the TW 
EAM for the microwave field adds to the difficulty of 
matching to the effective refractive index of the optical field 
and furthermore introduces undesirable dispersion effects.  

Fig 11 shows the effect of the finite electrode thickness on 
the spectral characteristics of impedance and effective 
dielectric constant of EA modulators. The lumped EAM 
structure analysed is the same as for Fig.10 with We=6 µm and 
electrode thicknesses of 0 µm (solid lines) and 0.33 µm 
(dashed lines), Fig 11(a). It can be seen that increasing the 
electrode thickness increases both the impedance and the 
effective refractive index. Moreover, the finite metal thickness 
causes a much stronger frequency dependence of the effective 
refractive index. In the case of the TW EAM the results are 
shown in Fig 11(b) for the case of the electrode width We=6 
µm and electrode thickness of 0 µm (solid lines) and 0.33 µm 

(dashed lines). It can be seen that finite metal thickness 
decreases both the impedance and the effective dielectric 
constant of the TW EAM. In both cases, the influence of the 
finite electrode thickness cannot be neglected and must be 
taken into account for accurate modelling of EAMs.  
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Fig. 10. Impedance and effective dielectric constant for (a) 
lumped-EAM, We=8 µm (solid line and We=6 µm dashed lines) and 

(b) TW-EAM geometry; (We=10 µm (solid lines) and We=6 µm 
(dashed lines). 
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Fig. 11. Impedance and effective dielectric constant for (a) 
lumped-EAM, We=6 µm, and (b) TW-EAM geometry We=6 µm. In 

both cases te=0 µm (solid lines) and te=0.3 µm (dashed lines). 
 
E. Tapered Laser Cavities 
 
Tapered laser cavities [49] are another example of a multi-

physics problem in photonics. Not only are the optical 
properties important, but the electrical and thermal properties 
also significantly affect performance.  

A tapered waveguide laser consists of a straight waveguide 
section and a tapered amplifier section as shown in Fig 12. 
The straight section acts as a modal filter to ensure that the 
amplifier is only excited by the fundamental mode. The 
tapered section gradually lowers the optical power density by 
allowing the beam to expand. This minimizes effects such as 
spatial hole burning and catastrophic mirror damage while 
permitting an increase in the total output power.  

Due to the structure of the laser cavity a wide angled BPM 
method must be used as described previously. For the laser 
cavity the permittivity (ε) depends on the temperature and the 
carrier distributions that in turn depend on the optical field 
intensity and the injection current. The carrier concentrations 
are found by solving the Poisson equation for both electrons 
and holes. Full details can be found in [50]. In the discussion 
of the WA-BPM technique the permittivity was contained in 
the refractive index since 0εµ=n  
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Fig. 12. Two dimensional representation of a tapered laser cavity 
 
The calculation is carried out using the coupled solution 

method. This method sub-divides the cavity into slices. The 
electronic and thermal equations are solved for a slice of the 
cavity. This gives new values for the refractive index and gain 
profiles of the slice, these values are then used as the optical 
field propagates to the next slice. 

The results of this model have been compared with 
experiment in [50]. A laser cavity with L=2mm, 
WRW=0.75mm, W0=90.3µm, RRW=95%, R0=1% and 
∆neff=0.008 is used. The virtual source power distributions for 
a variety of output powers show good agreement as shown in 
Fig 13.  

The use of modelling of components such as tapered laser 
cavities can provide information on the interaction between 
the various parameters that affect performance, such as the 
effect of the electric and thermal properties on optical 
performance. This can improve the efficiency of component 
design and therefore reduce the cost of the design process. 

 
IV. CONCLUSIONS 

 
Numerical modelling is an important tool in 

electromagnetics. The development of faster computers can 
improve the performance of numerical models, however 
greater improvements and understanding can be gained from 
the development of new numerical techniques.  

In this paper some recent developments in TLM and FD-
BPM modelling have been discussed and examples of their 
use given. Amongst these, the description of fine details in 
larger problems is of particular interest for EMC calculations. 
Two recent developments, the use of exact solutions for the 
field round a fine wire mapped onto the numerical grid and 
the use of triangular meshes to interface between coarse and 
fine meshes were presented. The use of TLM to describe the 
interaction of EM fields and materials was also described with 
the examples of an air-Lorentz interface and Faraday rotation 
in magnetized plasma. 

In photonics numerical modelling can also be used to 
improve the design of components. In this area the design of 
an EA modulator and a tapered laser cavity were given as 
examples. 
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Fig. 13. Virtual source power distributions (a) P=0.5W, (b) 
P=1W, (c) P=1.5W and (2) P=2W. 
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