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Microwave Heating Cavities: 
Modelling and Analysis  

Bratislav Milovanović, Nebojša Dončov, Jugoslav Joković 

 
Abstract – In this paper, cylindrical metallic cavities used in 

the processes of dielectric materials heating and drying by 
microwave energy, are discussed. Their mode tuning behaviour 
under different loading and excitation conditions has been 
presented. A short review of techniques used for modelling and 
analysis purposes as well as the numerical results mostly 
experimentally verified are given. 

Keywords – microwave cavity, load, transverse resonance 
method, neural networks, TLM method, resonant frequency. 
 

I. INTRODUCTION 

Microwave energy for heating and drying dielectric 
materials finds many uses in domestic, industrial and medical 
environments. As a result, a numerous microwave applicators 
have been developed over the years. They come in various 
shapes and sizes based on the properties, geometry and 
volume of dielectric materials. Among them, the most popular 
ones are resonant applicators classified as either single or 
multimode cylindrical metallic cavities, partially loaded with 
dielectric materials [1]. The knowledge of the mode tuning 
behaviour in a cavity under loading condition (i.e. physical 
and electrical parameters of the load) forms an integral part of 
the studies in microwave heating and can significantly help in 
designing these applicators. Thus, the loaded cylindrical 
metallic cavities have been the research subject of a number 
of authors. 

In general, the published results have been addressed 
mostly to the cylindrical cavity with rectangular cross-section 
[2-8] loaded with multilayer plan parallel dielectric slabs. This 
is a simple configuration suitable for good modelling of some 
practical heating and drying equipment. A cylindrical cavity 
with circular cross-section has been considered too [9-12], as 
a structure widely used in the processes of permittivity and 
loss measuring of dielectric materials. Theoretical analysis 
was based on the application of transverse resonance method 
(TRM) [13], a classical approach for this type of problems. 
This simple method allows for resonant frequencies 
calculation from the characteristic equation which is 
transcendental for lossless homogeneous [5,6], complex 
transcendental for lossy homogeneous [10] and integral for 
lossy inhomogeneous dielectric slab [7]. In order to solve the 
characteristic equation, an appropriate numerical technique 
with an efficient procedure for mode identification [8] was 
required. Also, some of the results of theoretical investigation 
were accompanying with the experimental work and the 

comparisons between measured and computed resonant 
frequencies were reported in references [9,11]. The main 
shortage of TRM is incapability of considering dielectric slabs 
with different shape than plan parallel. 

A numerical simple approximate procedure which does not 
require a use of complex mathematical technique is suggested 
in [14]. Using this approach the resonant frequencies in the 
cylindrical metallic cavities loaded by lossless and low loss 
dielectric slabs could be determined approximately from the 
network of resonant and anti-resonant curves obtained 
separately in air and dielectric part of the cavity. At the 
moment, the application of this procedure is limited to the 
case of one dielectric slab placed at the bottom of the cavity.  

Neural networks represent good alternative to classical 
approach in microwave heating area, allowing for faster and 
more accurate calculation of resonant frequencies. In 
reference [15], a classical multilayer perception (MLP) 
network is applied very successfully for modelling of 
cylindrical microwave cavity applicators. A good 
characteristic of this network is that belongs to the block box 
networks i.e. all functional dependences are modelled 
exclusively on the basic of the training data. However, the 
requirement of providing the relatively large training set from 
the TRM is the main disadvantage and it can be overcome 
with the use of so-called hybrid empirical-neural (HEN) 
model [16,18]. It is based on choosing an appropriate non-
uniform training sample distribution and the neural model 
training on the basic the resonant frequency differences 
between results obtained by TRM and approximate approach. 
Knowledge based neural (KBN) networks [17,18] represent 
another alternative to MLP approach. The KBNN model 
integrates the knowledge about the behaviour of the resonant 
frequencies defined in approximate approach, which results in 
significantly smaller training set with the same or even higher 
accuracy than MLP network. However, it is clear that 
suggested models face up to the same limitations as MTR and 
approximate approach used for the training of neural 
networks. 

As soon as complicated shapes or structures containing 
lossy dielectric loads are encountered, previously mentioned 
techniques are less suitable. As microwave heating applicators 
fall into one or both of the later categories, computational 
electromagnetic techniques emerge as an invaluable tool in 
the cavity design. They particularly allow users to see what is 
happening inside the cavities, thus empowering them to make 
necessary changes in order to optimize the cavity design. 
Numerical modelling provides valuable information on such 
parameters as the electric and magnetic field and the power 
absorbed by the load. Several numerical techniques are 
available for microwave heating studies; among them the 
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finite difference time domain (FD-TD) [19] and transmission 
line matrix (TLM) [20], as known as full-wave methods, are 
most popular in this field [21-25]. 

The TLM method is a general electromagnetically based 
numerical method highly suitable for modelling of the 
structures of complicated geometry. It has been developed and 
used very successfully to tackle the problems in the area of 
loaded cylindrical metallic cavities modelling [26-28]. 
Analysis of flowing type microwave applicators, i.e. tunnel 
type applicators is presented in [26]. Sufficiently fine non-
uniform TLM mesh is applied to model inhomogeneous lossy 
dielectric load, arbitrary raised above the cavity floor and 
whose electric parameters vary along its length under 
temperature influence. Another type of dielectric 
inhomogeneity as a result of load shape is considered in [27]. 
Appropriate TLM models are developed in orthogonal 
curvilinear mesh to describe several regular but complex 
geometric shapes of the lossy dielectric sample. An influence 
of real excitation to the resonant frequencies in cylindrical 
metallic cavity is investigated too, [28]. The straight wire 
conductor, as a real feed form, is introduced through wire 
node [29], in order to make TLM model closer to the 
experimental procedure where a small probe inside the cavity 
is used as an excitation. 

This paper contains a review of previously mentioned 
techniques, used by members of Laboratory for Microwave 
Technique and Satellite Television, Faculty of Electronic 
Engineering, University of Nis, for modelling and analysis 
purposes of microwave heating cavities. Some characteristic 
examples of loaded cylindrical metallic cavities will be 
presented together with the obtained results mostly 
experimentally verified at the same Laboratory. 
 

II. NUMERICAL TECHNIQUES 
 
A. Approximate procedure 
 

A new approach for approximate determination of resonant 
frequencies for the case of lossless and low loss dielectric slab 
placed at the bottom of cylindrical metallic cavities with 
rectangular, circular and elliptical cross-section [14] will be 
presented in this section. It is derived from very intensive 
investigation of mode tuning behaviour in cylindrical metallic 
cavities loaded with multilayer plan parallel dielectric slabs, 
conducted over the years. Compared with TRM, it 
significantly simplifies the resonant frequency calculation and 
speed up the identification of resonant modes during 
experimental measurements. 

 
 

Fig.1 A circular metallic cavity  

The approximate procedure will be illustrated for the 
example of circular metallic cavity, radius a and height h, 
loaded with lossless dielectric slab, thickness t, placed at the 
bottom of the cavity (Fig.1). For short-circuit boundary 
(electric wall) at the interface air-dielectric (z=t), resonance 
conditions in air and dielectric part of the cavity are: 

2/0tth λl=−  for ,...2,1,0=l                      (1) 

2
tkt

λ
=  for k=1,2,…                            (2) 

where: 0tλ  and tλ  are wavelengths of waveguide section, 
with the same cross-section as cavity, filled with air and 
dielectric, respectively. Integer number l  and k represent the 
number of half waves of standing wave for electric field in 
corresponding part of the cavity. 

Using the expressions for propagation coefficient in a 
waveguide filled with air and dielectric [13] and Eqs.(1-2), 
resonant frequencies versus filling factor t/h in air and 
dielectric part of the cavity can be found as: 
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where: ( )π2/0 cc ckf =  and ( )hcf 2/0 = . Constant ck  is 
governed by the dimensions of cavity cross-section.  

The anti-resonant frequencies versus filling factor t/h in air 
and dielectric part of cavity given as: 
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can be easily derived applying the open-circuit boundary 
(magnetic wall) at the plane z=t. Resonant and anti-resonant 
curves versus filling factor, given by Eqs.(3-6), are 
monotonous increasing in air part and monotonous decreasing 
in dielectric part of the cavity. Their graphical representation 
forms so-called resonant map that can be used for calculation 
and identification of resonant frequencies. As an illustration, 
resonant map of TM01p mode family is shown in Fig.2 
together with resonant frequencies calculated by TRM for 
circular metallic cavity with following dimensions: a=7 cm, 
h=14.24 cm and 80=ε r  (lossless dielectric–dotted lines) or 

2.780 jr −=ε  (low lossy dielectric–solid lines). 
It can be noticed that resonant frequency curves calculated 

by TRM start from points corresponding to the resonant 
frequencies of empty cavity: 

( ) ( ) 2
0

2
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and pass through the characteristic points rr( kl ) and aa( kl ). 
Points rr and aa are the crossing points of the auxiliary 
resonant and anti-resonant curves, respectively, in air and 
dielectric part of the cavity. In the direction of filling factor 
increase, the resonant frequency curve parts are concave 
between points aa( kl ) and rr( kl ) and convex between points 
rr( kl ) and aa( kl ), while for higher values of filling factor 
after the last rr( kl ) point, resonant curves follow the 
auxiliary anti-resonant curve for dielectric part of the cavity 
given by Eq.(6). 
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Fig.2 The resonant map and frequencies for TM01p  mode 

family calculated by TRM 
 

The resonant frequency curves versus filling factor change 
their shape in the crossing point which means that the second 
derivation of wanted approximate function should be equal to 
zero in these points. Introducing two additional points 
between rr and aa or between aa and rr, a cubic spline 
approximation can be applied for convex (Fig.3a) and 
concave (Fig.3b) resonant curve behaviour modelling. Using 
two addition points with coordinates ( )11, yx  and ( )22 , yx , 
the resonant frequency curve parts are divided into three 
segments: ],[ 10 xx , ],[ 21 xx  and ],[ 32 xx . For each segment 
the following cubic spline approximation is used: 
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where: [ ]ii xxx ,1−∈  for i=1,2,3 and 1−−= iii xxh . Variables 
Mi for i=1,2,3 are second derivations of wanted approximate 
function in points with coordinates ( )ii yx , . M0=0 and M3=0, 
while M1 and M2 can be found from the following system of 
two equations: 
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a) 

 
b) 

Fig.3 Additional points choice for best approximation 
 

How the quality of approximation strongly depends on 
accurate determination of two additional points coordinates, 
especially for the case of lossy dielectric slab, they are found 
empirically for best fitting: 
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where u(1) corresponds to x and u(2) corresponds to y 
coordinate of additional points and 
 

( ) ( ) ( ) ( )( )03011 3.0 iuiuiuiu −+=  for i=1,2          (13) 
( ) ( ) ( ) ( )( )03022 7.0 iuiuiuiu −+=  for i=1,2         (14) 

 
Variables xc and yc represent the xy coordinates of crossing 

points for corresponding auxiliary resonant curve in air and 
anti-resonant curve in dielectric part of the cavity. Parameter 
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A is 0.45 for concave and 0.5 for convex shape, while 
parameter B is: 
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Intensive investigation has been shown that approximate 

procedure, presented here, can be applied to low lossy 
dielectric slabs ( 12.0/ ,,, ≤εε rr ) as well, i.e. resonant 
frequency curves are still passing through the characteristic 
points rr and aa for dielectric materials with small losses. 
 

B. Neural networks 
 

In order to avoid complex and time-consuming 
mathematical calculations associated with TRM, an 
application of neural networks on resonant frequency 
determination in cylindrical metallic cavities is suggested in 
references [15-18]. The first step in cavity modeling was 
based on use of MLP neural networks while the training data 
was provided by TRM [15] (Fig.4). 
 

 
 

Fig.4 MLP approach 
 

As previously mentioned, the main disadvantage of this 
method was a large number of training data required for the 
training processes. Size of the training set can be significantly 
reduced using a hybrid empirical-neural (HEN) model 
[16,18], on the basic of non-uniform distribution of training 
samples obtained from approximate procedure and the 
deviations between results obtained using TRM and 
approximation approach (Fig.5). 
 

 
 

Fig.5 A hybrid empirical neural mode of cavity 
 

A special attention is this section will be addressed to the 
application of the knowledge based neural (KBN) network 
structure [17,18]. Since, there are explicate expressions for the 
resonant and anti resonant curves dependence on ,

rε  and t/h, 
defined in approximate approach and shown in Fig.2, the 
basic idea for KBBN approach is implementation of these 
expressions as activation functions of some neurons in the 
neural network. The proposed KBNN architecture, with two 

input parameters and resonant frequency as output parameter, 
is presented in Fig.6. 
 

 
Fig.6 Knowledge based neural network 

 
KBNN structure is a modified MLP structure. Namely, a 

network is consists of neurons grouped into the layers. Beside 
hidden layers of sigmoid neurons, there are so-called 
knowledge neurons (KN). Activation functions, as modified 
expressions of the resonant and anti-resonant curves in air 
( )i

af  and dielectric part ( )j
df  of the cavity, are realized 

through the layer of knowledge neurons. First type of KN uses 
the activation function  
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whereas the second type uses the activation function 
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where: a(i) and b(j) represent trainable parameters, i=1,2,...I 
and j=1,2,…J. It has been found that the symmetrical case in 
which the number of both types knowledge neurons is equal 
(I=J) gives the best results. As a result, KBNN models the 
following dependence 
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Application of such structure leads to a increasing of 

network generalization capabilities yielding to a further 
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reducing of required number of training samples. 
Furthermore, this approach eliminates need for the use of 
empirical model used in HEN approach making resonant 
frequency determination faster. 
 

C. TLM Method 
 

In the conventional TLM time-domain method, 
electromagnetic field strength in three dimensions, for a 
specified mode of oscillation in a cylindrical metallic cavity, 
is modelled by filling the field space with a network of link 
lines and exciting a particular field component through 
incident voltage pulses on appropriate lines [20]. 
Electromagnetic properties of different mediums in the cavity 
are modelled by using a 3-D network of interconnected nodes 
(Fig.7a), a typical structure being the symmetrical condensed 
node (SCN) [30]. Each node describes a portion of the 
medium shaped like a cuboid (Cartesian rectangular mesh) or 
a slice of cake (Non-Cartesian cylindrical mesh) depending on 
the geometry of modelled cavity (Fig.7b).  

  
         a)    b) 

Fig.7 
a) A cavity space modelled by the mesh of TLM nodes 

b) A portion of a medium in rectangular or cylindrical grid  
 
Additional stubs can be incorporated into TLM model to 

account for inhomogeneous materials and/or electric and 
magnetic losses in the modelled mediums. For the case of 
homogeneous lossy dielectric, given the effective electrical 
conductivity σe, lossy ‘electrical’ element for the 3-D TLM is 
defined as [30]: 
 

( )zyxfG ee ∆∆∆= ,,σ                        (19) 
 
where ∆x, ∆y and ∆z are dimensions of TLM node in the x, y 
and z directions respectively.  

Complex permittivity is connected to effective electrical 
conductivity in the form of: 

ωσ−εε=εε=ε /,
00 err j                    (20) 

which gives loss tangent at particular frequency f as: 
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For lossy inhomogeneous dielectric sample, as in the case 
of tunnel type microwave applicators, TLM approach is based 

on using a non-uniform mesh with high resolution. Dielectric 
is divided into a sufficient number of regions with equal 
length in the direction of inhomogeneity [26] (Fig.8). Each of 
these regions is then considered as a lossy homogenous 
dielectric which can be modelled using Eqs.(19-21). 
Resolution of the applied TLM mesh for each region of 
dielectric sample (number of nodes in ) varies in the direction 
of inhomogeneity and it depends on its constant relative 
permittivity. TLM mesh resolution is also different in 
dielectric and air layer ( 1/ 21 <∆∆ ad zz ) as a result of the 
propagation velocity in the dielectric sample square root of 
permittivity lower than in free space. 
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Fig.8 A non-uniform TLM mesh for inhomogeneous 

dielectric modelling 
 

Another type of inhomogeneity, as a result of load shape is 
investigated in [27]. Having in mind that in many practical 
cases of microwave heating cavities application, dielectric 
material in the cavity can have more complex shape, several 
characteristic geometries of the dielectric load are modelled 
using 3-D TLM algorithm for orthogonal curvilinear mesh. 
Here, the most complicated shape where dielectric sample is 
sloped at some angle in regard to cavity base is given. 

A sloped lossy dielectric sample (total cavity load 
inhomogeneous in r, θ and z directions) (Fig.9) is modelled in 
the form of the n dielectric layers (Fig.10a) of small thickness 
dz (Fig.10b). The cavity space is divided into non-uniform 
grids in all three directions. The plane interface B-B’, formed 
by two regions ((1) and (2)) with different relative permittivity 

rεε0 and 0ε , respectively, is defined by vector of points 
which location in radial direction 

sbr  is determined by the 

resolution of the mesh in θ direction and it can be written for 
k-th dielectric layer: 
 

)2/)12cos(( θds
x

r k
sb −
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Fig.9 A circular metallic cavity loaded with lossy dielectric 

sample sloped at angle α in regard to cavity base 

 
a) 

 
b) 

Fig.10 The k-th layer (k=1,..., n) of the lossy dielectric sample 
sloped in regard to cavity base in: 

a) the rθ plane, b) the rz plane 
 

Distance between plane interface for k-th layer and cavity 
centre, xk, can be found from Fig.10b: 

αtg
xa

z

k

k =
−

                            (23) 

where is: α - slope angle of the dielectric sample in regard to 
base of the cavity, a – radius of the cavity and  
zk – distance between centre of k-th dielectric layer and base 
of the cavity.  In the modelling approach, it is used that for 

sbji rr ≤, the cell belongs to region (1) and for 
sbji rr >,  the 

cell belongs to region (2). In the regions with higher cell 
radius jir , , finer TLM cylindrical mesh is applied in order to 
keep an error, made by using this rule, small. 

In previous TLM models, an impulse excitation is used to 
establish a desired mode distribution in the modelled cavity. 

However, this way of enhancing the wanted TE or TM mode 
is clearly different from the experimental procedure 
conducting in [11] where a small probe, placed inside the 
cavity, is used as an excitation (Fig.11). This difference in 
TLM and experimental model regarding the cavity excitation 
may cause that the TLM results of resonant frequencies and 
field strength are shifted from the experimental ones.  

h

t

l

d

2a  
Fig.11 A loaded cylindrical cavity with a real feed probe 

 
Also, in practice, depending on the position and the form of 

excitation (probe, loop, waveguide or slots), the number of 
modes excited in the cavity will be different from the 
theoretical case. For instance, placing the coaxial cable in the 
middle of cavity height will not generate modes with even-
mode numbers in z-plane. From the remaining odd-mode 
numbers some modes will not be excited, depending on 
whether they have an electric field component in the direction 
of the source electric field. The resulting electric field strength 
will then be given by the sum of the modes excited in the 
cavity. Another problem is accurate identification of modes. 
Although the reflection characteristic (S11) plots give the 
number of modes in the cavity, they do not indicate exactly 
which modes are present. The probe presence also tends to 
shift the modes and sometimes split degenerate modes.  

Recent improvement in the form of TLM wire node [30] 
can be used to efficiently account for probe presence inside 
the cavity and allows for more accurate numerical 
investigation of the real excitation influence to the resonant 
frequencies. Wire node is based on SCN with one small 
modification of additional link and stub lines interposed over 
the exiting network to account for increase of capacitance and 
inductance of the medium caused by wire presence. Wire 
network is usually placed into the centre of the TLM nodes to 
allow complex wire structures modelling, e.g. wire junctions 
and bends. The single column of TLM nodes, through which 
wire conductor passes, can be used to approximately form the 
fictitious cylinder which represents capacitance and 
inductance of wire per unit length. Its effective diameter, 
different for capacitance and inductance, can be expressed as 
a product of factors empirically obtained by using known 
characteristics of TLM network and the mean dimensions of 
the node cross-section in the direction of wire running.  

Requirement that the equivalent radius of fictitious cylinder 
is constant along nodes column can be easily met in a 
rectangular grid. However, in the cylindrical grid for wire 
conductor in the radial direction, mean cross-section 
dimensions of TLM nodes, through which wire passes, are 
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changeable making difficult to preserve distributed 
capacitance and inductance of wire per unit length. Because of 
that, a rectangular grid is more suitable for modelling of 
cylindrical cavity with circular cross-section. At the same 
time, the numerical errors introduced by describing boundary 
surfaces of the modelling cavity in a step-wise fashion are 
reduced applying the TLM mesh higher resolution around 
cavity walls.  

 
III. NUMERICAL ANALYSIS 

The approximate procedure presented in section II.A will 
be illustrated on the example of cylindrical metallic cavity 
with circular cross-section (Fig. 1, a=7 cm and h=14.24 cm) 
[14]. The load is lossy homogeneous slab placed at the bottom 
of the cavity and whose complex relative permittivity is 

6.980 jr −=ε . The resonant frequency curves of TM01p 
mode family obtained using the approximate procedure (short 
dotted lines) are shown in Fig.12 as well as the solutions of 
complex transcendent characteristic equation defined from 
TRM (solid lines). An excellent agreement between the results 
of these two approaches can be observed.  
 

 
Fig.12 The resonant frequencies of TM01p mode family 

obtained using: a) approximate procedure (short dotted 
lines), b) MTR (solid lines) 

 
The circular metallic cavity with the same dimensions as in 

previous example will be used to show an advantage of KBN 
network in comparison with classical MLP network [17]. Two 
models are selected for simulation: MLP4-12-12 model (12 
neurons in each of two hidden layers) and KBNN3-4-16-16-
16 model (16 neurons in each of three hidden layers and 4 
knowledge neurons-2 for each activation function). The 
number of training data samples is 80. Simulation results for 
TM112 mode, calculated using these two models as well as 
referent curve obtained using TRM are shown in Fig.13. As 
expected, the KBNN3-4-16-16-16 model results have better 
agreement with referent values than results of corresponding 
MLP model. The developed models are also used for 3-D 
presentation of resonant frequency dependence in function of 
dielectric relative permittivity and filling factor (Fig.14a for 
MLP4-12-12 and Fig.14b for KBNN3-4-16-16-16). The used 

training data set is too small for MLP network training which 
explains the lower accuracy achieved with this model. 

 
Fig.13 Simulation results comparison of the MLP4-12-12 and 

KBNN3-4-16-16-16 model with referent results  
 

 
a) 

 
b) 

Fig.14 Three-dimensional presentation of TM112 mode 
obtained using: a) M4-12-12 model, b) KBNN3-4-16-16-16 

model 
 

Tunnel type microwave applicator is the first of several 
examples, considered in this paper, where an advantage of 
TLM method in comparison with other presented approaches, 
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is clearly indicated. Movable applicator load (dielectric 
material on a conveyor belt), which mostly contains water as a 
dominant element within itself, could be represented in the 
form of dielectric slab raised from the bottom of the 
rectangular metallic cavity [26] (Fig.15, a=35 cm, b=37 cm, 
h=26.9 cm). Its electrical parameters are continually changed 
along the moving direction depending on the temperature 
variation in the particular load sample. As a result, the 
applicator load is a lossy inhomogeneous dielectric slab. TRM 
with a modification in the form of integral characteristic 
equation [7] faces up to the great difficulties of numerical 
nature and can give a satisfactory solution only for lossless 
load placed at the bottom (r=0) or in the middle of the cavity 
(r=s).  

 
Fig.15 A loaded rectangular metallic cavity 

 
Numerical results of resonant frequencies for TE101 mode 

versus filling factor t/h, calculated using integral TRM are 
shown in Fig.16 for lossless inhomogeneous dielectric slab 
placed at the bottom of the cavity (r=0) with linear 
temperature variation (5-50) oC (dashed line) and for two 
hypothetical cases of homogeneous lossless sample with 
extreme temperature: T=5 oC and T=50 oC (dotted lines). In 
the same figure, the star symbols indicate the results obtained 
using the TLM model (Fig.8) with impulse field excitation Hz 
to enhance the TE10p modes inside the cavity. There is an 
excellent agreement between TLM and integral TRM results. 
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Fig.16 The resonant frequency versus filling factor t/h and for 
lossless sample placed at 0=r , calculated using: 3-D TLM 

method (*) and integral TRM (dashed line) 
 

The resonant frequency curve of TE101 mode versus filling 
factor t/h, obtained using suggested TLM model, for the real 

practical case when inhomogeneous lossy dielectric sample is 
located at the height r=4 cm from the bottom of the cavity is 
shown in Fig.17. As it can be seen from Figs.16 and 17, the 
resonant frequencies are within the limits determined by two 
hypothetical homogenous dielectric samples. Further 
investigation of influence of inhomogeneous load location, 
thickness and losses on applicator mode tuning behaviour can 
be found in [26].  
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Fig.17 The resonant frequency versus filling factor t/h and for 
lossy sample raised at cmr 4= , calculated using: 3-D TLM 

method 

The next example is TLM modelling of dielectric sample 
with complex geometry. For that purpose, a circular metallic 
cavity with dimensions a=7 cm and h=14.24 cm (Fig.9) is 
investigated [27]. The load shape in Fig.9 is realised in the 
experimental set-up using the cavity loaded by water and 
sloped at angle α in regard to its base, while a model shown in 
Fig.10 is used for TLM modelling. Complex relative 
permittivity of water is calculated from Debye’s formula at a 
temperature T=20°. The TLM cylindrical mesh is excited with 
impulse excitation Hθ to enhance the TM01p mode. The circle 
in the centre of the mesh is considered as an open-circuit 
boundary. The same mode is established in the experimental 
cavity using coupling loop at the end of the coaxial line. The 
number of nodes in the z direction has been increased for 
higher values of α keeping the accuracy of modelling. 
Symmetry is used around a plane running through the axis of 
the cavity (symmetry plane p-p’). Resonant frequencies 
calculated using TLM model as well as measured results are 
given in Table.1 for several values of α.  

α=5° α=15° α=25° α=35° α=45° 

f (GHz) 

(TLM) 

f (GHz) 

(Exp.) 

f (GHz) 

(TLM) 

f (GHz) 

(Exp.) 

f (GHz) 

(TLM) 

f (GHz) 

(Exp.) 

f (GHz) 

(TLM) 

f (GHz) 

(Exp.) 

f (GHz) 

(TLM) 

f (GHz) 

(Exp.) 

1.581 1.60 1.589 1.62 1.626 1.62 1.604 1.61 1.613 1.63 

1.702 1.72 1.772 1.79 1.834 1.87 2.043 1.98 2.046 2.08 

2.358 2.37 2.417 2.42 2.457 2.47 2.526 2.59 2.849 2.86 

2.776 3.05 2.805 3.07 2.859 3.09 2.888 3.12 3.453 3.53 
  

Table 1 Numerical and experimental results of the resonant 
frequencies for several values of α 

Some deviations, noted especially at higher frequencies, 
can be explained mostly both by the stair-casing description of 
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the dielectric incline and the difference between TLM and 
experimental model regarding the cavity excitation, i.e. wire 
presence in the experimental cavity. The complete analysis for 
different load shapes and their influence on the resonant 
frequencies in cylindrical metallic cavity are given in [27].  

The last example will illustrate the influence of real feed 
probe length to the resonant frequencies of circular metallic 
cavity loaded with lossy homogeneous dielectric sample [28] 
(Fig.11, a=7 cm, h=14.24 cm, t=3 cm). How in experimental 
set-up water is used as a cavity load, complex relative 
permittivity of dielectric sample is calculated from Debye’s 
formula. A feed probe with radius r=0.5 mm, is placed at the 
height l=7.4 cm from the bottom of the cavity, slightly 
different from h/2, in the r direction. In this way, it is possible 
to excite modes having r-component of the electrical field in 
the cavity. Feed probe, modelled through TLM wire node, is 
fed by real voltage source Vsource=1 V and Rsource=50 Ω. The 
resonant frequencies are determined from the reflection 
characteristic (S11) plot. 

The obtained TLM numerical results and the experimental 
results of resonant frequencies for modes in the frequency 
range f=[1.5-3.0] GHz, versus probe length are shown in 
Fig.18. The circle symbols indicate the results obtained using 
TLM method with wire node to account for probe presence 
(real probe TLM) and triangle ones indicate the experimental 
results. The straight lines present the values of resonant 
frequencies calculated using the conventional TLM method 
with an impulse excitation (impulse TLM). Also, a quarter-
wavelength curve is presented in order to identify the areas of 
capacitive and inductive character of probe input impedance. 
As it can be seen, resonant frequency dependence of feed 
probe length is significant and different for these two areas. 
Also, as expected, TLM results obtained with wire node 
follow the experimental ones much better than the 
conventional results. Reflection characteristic plot (S11) for 
the probe length d=5 cm is shown in Fig.19. More about the 
influence of probe presence and its dimension on cavity mode 
tuning behaviour can be found in [28].  

 
Fig.18 Resonant frequencies versus probe length  

 
 

IV. CONCLUSION 

In this paper, a short review of techniques used for 
modelling and analysis purposes of cylindrical metallic 
cavities together with the numerical results mostly 
experimentally verified are given. The presented techniques 
can be very useful from practical point of view in the 
microwave heating applicators designing. Future researches 
will be divided into two parts: use of TLM z-transform 
method for accurate modelling of frequency dependant 
dielectric materials and the development of hybrid TLM-
neural networks models. 

 
a) 

 
b) 

Fig.19 S11 plot in the frequency range f=[1.5-3.0] GHz for the 
probe length d=5 cm, obtained: 

a) experimentally, b) using TLM method 
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