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Abstract — Engineering design and analysis (EDA) software 
circuit simulators has traditionally focussed virtually exclusively 
on the scientific calculations performed by the software. Software 
technology, however, has matured to the point where it can 
provide significant improvements in the ability of EDA software 
to address the full requirement of the engineering design flow. In 
this paper we describe some of those technologies. 
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I. INTRODUCTION 

Engineering design and analysis (EDA) software has 
traditionally addressed only the matter of “crunching numbers,” 
the technical calculations that the software performs. The needs 
of the RF and microwave industries go far beyond this, 
however; they have evolved to the point where technical 
capability, by itself, no longer meets the complex needs of 
circuit and system designers. In order to achieve a high level of 
design productivity, the architecture of the software 
system—not just the analytical capabilities—must be 
addressed. At the same time, software technology can enhance 
the analytical capabilities of a circuit simulator. In this paper, 
we show ways in which that can be accomplished.  

Our long-term goal has been to make use of modern software 
technology to enhance the ability of RF and microwave 
engineers to design circuits and systems. We have implemented 
many of the ideas expressed in this paper, in a commercial 
software product [1]. It differs from other tools in that it is 
designed to address design- flow issues as well as technical 
capabilities. We believe that the use of modern software 
technology, which has largely been ignored by both the research 
and commercial communities, can do much to provide great 
efficiencies in the design process. 

II. DESIGN FLOW 

By the term design flow, we mean the overall process of 
designing a circuit, from conception through electrical design 
and layout, to tape-out (in the case of monolithic circuits) or 
fabrication (of hybrids). Design flows that exist commonly 
throughout industry have significant, well-known, and 
commonly-encountered bottlenecks.  

For example, consider a simple function: electromagnetic 
(EM) analysis of a part of a microstrip circuit. In traditional 
simulators, the structure to be analyzed must be drawn in the 

EM simulator’s drawing tool, analyzed, and the results, in the 
form of scattering (S) parameters, returned to the circuit 
simulator. If the circuit does not work, the process must be 
repeated, and at each iteration, there is a genuine chance that 
errors will occur. Throughout the process, there is no way to 
view the results and ascertain that they are indeed valid. In 
effect, the designer depends on human infallibility to guarantee 
that the results are correct, and that the circuit simulated in the 
EM simulator is precisely the one that finally is laid out. This is 
a dangerous thing to do, especially when a large number of 
circuit components must be simulated. The same problem 
occurs in layout. Layout is frequently performed by a 
technician, based on a sketch provided by the design engineer. 
The circuit is copied at least twice, once by the engineer and 
once by the technician, and ample opportunities exist for errors 
to occur and for changes to be made that are not reflected in the 
circuit description in the simulator. Usually, considerable 
modification of the layout takes place, much of which may be 
outside the control of the design engineer.  

Design-flow issues such as these can be addressed though 
software technology, as opposed to simulation technology. 
There are two aspects to this. The first is to basic architecture of 
the EDA software itself, designed as a complete system. The 
second is the use of modern software technologies that are 
available to the software designer. Many technologies that have 
been developed in the past decade can ease the task of designing 
high-frequency circuits and systems, and smooth the design 
flow. The results are improved designs, reduced error, and 
decreased cost.  

III. SOFTWARE INTEGRATION 

Initially, a circuit simulator consisted of an analytical 
“engine,” plus modules to provide and process data (Fig. 1). 
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Fig.1. Architecture of a simple circuit simulator 

This arrangement is fairly rigid in its ability to handle data, 
and it quickly became obvious that much more versatile 
methods were needed. It is axiomatic that tight integration 
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between simulators can do much to smooth design flow and to 
eliminate sources of human error. Attempts at such integration 
began around 1990, and involved the use of supervisory 
software to control the flow of data between dissimilar tools, 
such as simulators, layout tools, and display modules (Fig. 2). 
Such software had mixed success. It happens that the 
supervisory function is surprisingly complex, often requiring 
millions of lines of code, an, as a result, d software configured 
in this manner often has been unreliable. However successful or 
unsuccessful in terms of functionality, such software introduces 
a layer of complexity that is not fundamentally necessary. It is 
necessitated only by the need to interconnect existing, 
dissimilar products. 
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Fig. 2. Use of supervisory software to control data flow for 

integration of simulator components 

Modern software technology offers ways seamlessly to 
interconnect software developed by independent parties 
without the need for supervisory software. One such technology 
is component architecture, which we describe shortly. Of 
course, the basic design of the software system, in the absence 
of such special technologies, can also do much to provide 
seamless integration between functions. 

IV. ARCHITECTURAL CHARACTERISTICS 

A. Object Oriented Design 

Object-oriented design (OOD) involves the use of software 
objects, sometimes called classes, which contain data and the 
functions to manipulate those data. Those objects initialize 
themselves on coming into scope and release allocated memory 
when no longer needed. Objects can inherit other objects, 
allowing for substantial code reuse. Object-oriented design 
allows functions within the software system to be self 
contained, so modifying one part has minimal effect on other 
parts of the system.  

OOD exists for dealing with the complexity of large software 
systems, which otherwise might become unmanageable. 
Without the use of such techniques, large software systems 
become so complex, with so many interactions between parts, 
that it is virtually impossible to modify one part and make 
certain that the modifications have no unforeseen effect on 
other parts.  

It is important to emphasize that OOD is an architectural 
method, not a programming language. Programming in C++ or 

some other “object-oriented” language does not automatically 
achieve these benefits; the underlying architecture, which is an 
engineering design, must be successful. Conversely, it is 
possible to create object-oriented architectures in programming 
languages that are not designed to be object oriented; for 
example, the original version of APLAC, an object-oriented 
circuit simulator developed at Helsinki University of 
Technology, was written in C.  

B. Single-Database Architecture 

In our architecture, all data are contained in a single database. 
Circuit elements in different simulation functions are simply 
different views of the same data. For example, a microstrip line 
is a symbol in a schematic window, with a certain length and 
width, but in the layout it is a GDSII cell showing the line. If the 
length, for example, is changed in the schematic, the length 
changes instantaneously in the layout, since both views access 
the same data item. It is literally impossible for the layout to 
become inconsistent with the circuit description. In this way, 
human errors in the layout process are substantially reduced. 

C. Component Architecture 

Component architecture allows the integration of dissimilar 
software at the object-code level. In Microsoft Windows, the 
implementation is called COM, for Component Object Model. 
COM works by defining interfaces and statistically unique 
identifiers that allow one software object to access the 
functionality of another. COM objects need not know anything 
about their clients beyond the interfaces. Much of the MS 
Windows operating system, and many Windows programs, are 
implemented in COM. For example, the various parts of 
Microsoft Office are COM clients.  

COM is a binary standard, so COM objects can be written in 
any programming. language. They are implemented in dynamic 
link libraries (DLLs). COM objects need not even be located on 
the host computer; they can be relocated on a network.  

COM allows great versatility in linking third-party simulators 
to a common application program interface (API). It is also 
valuable in allowing users to write programs that operate the 
API and its clients directly.  

D. Component-Based Simulation Systems 

Extensive use of COM interfaces allows a simulation systems 
to be created from a user-selected mix of simulators and model 
sets. We foresee the time, in the near future, when a user will be 
able to create a custom simulation system, addressing his 
particular needs, from a broad range of third-party simulators 
and models. Already, users of our design environment can 
employ various third-party electromagnetic simulators, which 
integrate seamlessly with the rest of the system. This capability 
is currently being extended to include circuit simulator 
interfaces. 
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A. Models 

Models in our software do not reside within the simulator 
code. They reside in DLLs separate from the main executable 
and link to the executable through COM interfaces. This creates 
many advantages. It eases the problem of model updates, since 
only a DLL need be replaced, and it eases the management of 
proprietary models, as they need only be distributed to users 
who actually need them. In most simulators, proprietary models 
must be collected, compiled into a single executable, and that 
executable made available to all potential users. This creates a 
substantial management task.  

User-defined models are created in precisely the same 
manner as our own models. A separate program, implemented 
as a COM “wizard,” accepts the model description (names, 
parameters, Y parameters or I/V equations, and so on) and 
creates the C++ source code for the model. The code is then 
compiled into a DLL and loaded into the appropriate directory. 
The new model then loads, when the system is started, just as 
any other model.  

B. Direct Formulation Of Circuit Equations 

In the past, circuit simulators used netlists to enter data. A 
netlist is simply a list of components, excitations, and their 
nodal connections. Later, schematic-capture modules were 
included. Those modules allowed users to enter the circuit 
graphically, then created a netlist, which was delivered to the 
simulator. The use of schematic capture modules decreased the 
probability of error in the design of large circuits, but also 
created a data-flow bottleneck between the circuit description 
and the simulator, because the simulator could not send data 
directly to the schematic. 

To avoid this problem we eliminate the netlist. Circuit 
equations are formulated directly from the component database, 
and the database is maintained in memory during this process. 
This makes the formulation process very fast, and allows for 
bidirectional data transfer between the simulator and the 
database.  

C. Dependency Hierarchy 

All objects maintain a dependency hierarchy. When an object 
(e.g., an EM structure) is modified, the information about the 
modification ripples through the hierarchy and all objects 
(specifically, subcircuits) are marked for reanalysis. Objects 
that do not depend on that structure are not reanalyzed. This 
prevents unnecessary computation, eliminating unnecessary 
computational effort. This is especially important for structures 
that require long analyses, such as electromagnetic simulations. 

Figure 3 illustrates the dependency hierarchy for a circuit. 
suppose, for example, that we want the S parameters of object 
A, which might be a part of a larger circuit. Object B, another 
subcircuit, has been modified. Because of the dependency 
pointers, the system knows that object A, object B, and the two 
objects between B and A, which depend on B, must be 
reanalyzed. However, the objects to the left of A are unaffected 
by the changes to B, and thus need not be recalculated.  

A

B

 
Fig.3. Illustration of the dependency hierarchy. 

The circles sepresent objects, which could be S parameter blocks, 
subcircuits, EM structures, or similar parts of a design. The arrows 

show the dependency. 

When an analysis is performed, the simulation begins with 
the user’s desired measurements. Subcircuits (or other objects) 
to which the measurement applies are marked for analysis, and 
finally their dependencies are similarly marked. The analysis 
then proceeds in the logical manner, computing only the 
elements that have been marked and ignoring the rest. 

D. Caching and the Speed-Memory Trade-Off 

We cache all data, and delete it only when it has become 
invalid. This minimizes reanalysis, and is essential for such 
functions as real-time tuning, described below.  

There is a fundamental trade-off between speed and memory 
use in any simulator. To minimize the use of memory, it is 
essential to delete data as soon as it is not immediately needed, 
and to reuse the memory space. Unfortunately, the recreation of 
these data, which is frequently necessary, requires extra 
computation time. If the data are saved, however, computation 
time is reduced, but more memory space is used.  

Because of the high cost of memory, simulators developed 
before the mid 1990s invariably minimized memory use at the 
expense of speed. Today, memory is cheap, so it makes much 
more sense to use memory and minimize computation time. 
Unfortunately, the decision to minimize memory of 
computation is a fundamental one, and it is difficult to convert a 
simulator designed to minimize memory into one that 
minimizes computation.  

E. Real-Time Tuning 

It is possible to tune any linear circuit in our simulators in real 
time, and many nonlinear circuits as well. This is accomplished 
by reducing the untuned part of a circuit to a single admittance 
matrix, at each analysis frequency. The untuned part is then 
reduced and the results cached. This reduced admittance matrix 
is then connected to the tuned elements and analyzed. The 
dimension of the reduced Y matrix is simply the number nodes 
of the tuned elements plus the number of ports and 
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measurement points. The speed of tuning then depends on the 
number of circuit elements in the optimization, not on the size 
of the original circuit. Thus, arbitrarily large circuits can be 
tuned in real time. Figure 4 illustrates this process. 

Untuned
Subcircuit
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]

Complete
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Tuned Elements  
Fig.4. To provide real-time tuning, the untuned part of the circuit is 

reduced to a single admittance matrix, analyzed, and the Y parameters 
are cashed. This is performed automatically at the beginning of the 
analysis. Then, only a reduced matrix needs to ne analyzed when 

element values are modified by tuning. 

F. Simulators as Objects 

In our simulation architecture, simulators are viewed simply 
as objects, like other objects, not as the “focal point” of the 
system. Simulator objects can be used in a variety of ways 
throughout the system. For example, suppose a nonlinear 
device model requires S parameter data as part of its set-up 
process. The model can invoke the linear simulator, have it read 
a file of data, convert it to Y parameters, and store it. As another 
example, suppose that a user wants to use an EM model that 
does not have data for the desired dimensions in its database. 
The model invokes the EM simulator, creates the necessary 
data, and stores it in the database.  

This creates an interesting and apparently backward situation 
in which the model uses the simulator; normally, we expect the 
opposite. The advantages of this arrangement, however, are 
increased versatility and code reuse.  

G. Use of Frequency-Domain Data in Time-Domain Simu-
lators 

A perennial problem has been the need to use fre-
quency-domain data in time-domain simulation. A practical 
approach is to create a LaPlace representation of an impedance 
or admittance function. A number of technologies have been 
developed to include LaPlace data in time- domain simulation, 
including asymptotic waveform expansion [2] and numerical 

LaPlace inversion [3]. Given the network function, it is also 
possible to realize it as an RLC network. Whatever method is 
used, it is necessary somehow to create a pole-zero 
representation of the required data (e.g., a set of measured S 
parameters or the results of and EM simulation).  

We use a practical method in which we create a network 
function of the form  

F s( )
cn

s pn–
--------------

n 1=

N

∑ d sh+ +=

 

(1) 
 

from calculated frequency-domain data. This process can be 
used with S parameter blocks, transmission lines, EM 
simulations, and similar frequency-domain data. The terms cn 
and pn are residues and poles, respectively, and d and h are real. 
This is easily converted to a time-domain response. Iterative 
and recursive numerical techniques are used for finding cn, pn, 
d, h.  

V. CONCLUSIONS 

We have shown that attention to software architecture, in 
contrast to analytical capability, can do much to enhance the 
design flow of an engineering organization. This is 
accomplished by tight integration of simulator functions, 
through the use of modern software design techniques. The 
result is improvements in engineering productivity, cost, and 
time to market of engineered products.  
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