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Information Theory and Electromagnetism:  
Are They Related? 

 
Sergey Loyka 

 
Abstract — In this paper, we study the limitations imposed by 

the laws of electromagnetism on achievable MIMO channel 
capacity in its general form. Our approach is a three-fold one. 
First, we use the channel correlation argument to demonstrate 
that the minimum antenna spacing under any scattering 
conditions is at least half a wavelength. Secondly, using a plane-
wave spectrum expansion of a generic electromagnetic wave 
combined with Nyquist sampling theorem in the spatial domain, 
we show that the laws of electromagnetism limit the minimum 
antenna spacing to half a wavelength, 2/λ , (in the case of 1-D 
antenna apertures) only asymptotically, when the number of 
antennas n →∞ . For a finite number of antennas, this limit is 
slightly less than 2/λ . The number of antennas and, 
consequently, the MIMO capacity is limited for a given aperture 
size. This is a scenario-independent limit. Finally, we study the 
MIMO capacity of waveguide and cavity channels. The rationale 
for this is three-fold: (i) waveguide/cavity models can be used to 
model corridors, tunnels and other confined space channels, (ii) 
this is a canonical problem; its analysis allows to develop 
appropriate techniques, which can be further used for more 
complex problems, (iii) it allows to shed light on the relation 
between information theory and electromagnetism and, in 
particular, to establish the limits imposed by the laws of 
electromagnetism on achievable channel capacity. 
 

I. INTRODUCTION 
 

It is well recognized that the wireless propagation channel 
has a profound impact on MIMO system performance. In 
ideal conditions (uncorrelated high rank channel) the MIMO 
capacity scales roughly linearly as the number of Tx/Rx 
antennas. The effect of channel correlation is to decrease the 
capacity and, at some point, this is the dominant effect. This 
effect is highly dependent on the scenario considered [3]. 
Many practically-important scenarios have been studied and 
some design guidelines have been proposed as well. 

In the present paper, we analyze the effect of propagation 
channel from a completely different perspective. 
Electromagnetic waves are used as the primary carrier of 
information. The basic electromagnetism laws, which control 
the electromagnetic field behaviour, are expressed as Maxwell 
equations [5]. Hence, we ask a question: What is, if any, the 
impact of Maxwell equations on the notion of information in 
general and on channel capacity in particular? In this paper, 
we try to answer the second question. In other words, do the 
laws of electromagnetism impose any limitations on the 
achievable channel capacity? We are not targeting in 
particular scenarios, rather, we are going to look at 

fundamental limits that hold in any scenario. Analyzing 
MIMO channel capacity allows one, in our opinion, to come 
very close to answering this question. 

Our approach is a two-fold one. First, we employ the 
channel correlation argument and introduce the concept of an 
ideal scattering to demonstrate that the minimum antenna 
spacing is limited to about half a wave length for any channel 
(i.e., locating antennas closer to each other will not result in a 
capacity increase due to correlation). Secondly, we use the 
plane wave spectrum expansion of a generic electromagnetic 
wave and the Nyquist sampling theorem in the spatial domain 
to show that the laws of electromagnetism in its general form 
(Maxwell equations) limit the antenna spacing to half a 
wavelength (for linear antenna arrays) only asymptotically, 
when the number of antennas ∞→n . For a finite number of 
antennas, this limit is slightly less than 2/λ  because a slight 
oversampling is required to reduce the truncation error when 
using the sampling series. In any case, this limits the number 
of antennas and the MIMO capacity for a given aperture size. 
It should be emphasized that this is a scenario independent 
limit. It follows directly from Maxwell equations and is valid 
in any scenario. 
 

II. MIMO CHANNEL CAPACITY 
 

We employ the celebrated Foschini-Telatar formula for the 
MIMO channel capacity [1,2], which is valid for a fixed linear 
n×n matrix channel with additive white Gaussian noise and 
when the transmitted signal vector is composed of statistically 
independent equal power components each with a gaussian 
distribution and the receiver knows the channel, 

2log detC
n

+ρ = + ⋅ 
 

I G G    [bits/s/Hz],      (1) 

where N is the numbers of transmit/receive antennas, ρ is the 
average signal-to-noise ratio, I is n×n identity matrix, G is the 
normalized channel matrix (the entries are complex channel 
gains from each Tx to each Rx antenna), tr[ ] N+ =GG , 
which is considered to be frequency independent over the 
signal bandwidth, and “+” denotes transpose conjugate. In an 
ideal case of uncorrelated full-rank channel (1) reduces to 

( )2log 1 /C N N= +ρ ,                         (2) 
i.e. the capacity is maximum and scales roughly linearly as the 
number of antennas. 
 

III. THE LAWS OF ELECTROMAGNETISM 
 

It follows from (1) that the MIMO channel capacity 
crucially depends the propagation channel G. Since 
electromagnetic waves are used as the carrier of information, 
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the laws of electromagnetism must have an impact on the 
MIMO capacity. They ultimately determine behaviour of G in 
different scenarios. Hence, we outline the laws of 
electromagnetism in a MIMO system perspective. In their 
most general form, they are expressed as Maxwell equations 
with charge and current densities as the field sources [5]. 
Appropriate boundary conditions must be applied in order to 
solve them. We are interested in application of Maxwell 
equations to find the channel matrix G in (1). Since the Rx 
antennas are located at some distance from Tx antennas (not 
at the same points in space), we are interested in source-free 
region of space, (i.e., electromagnetic waves). In this case, 
Maxwell equations simplifies to the system of two decoupled 
wave equations [5]: 

2 2
2 2

2 2 2 2
1 10 0
c t c t

∂ ∂∇ − = ∇ − =
∂ ∂

E HE H          (3) 

where E  and H  are electric and magnetic field vectors, and c 
is the speed of light. There are 6 independent field 
components (or “polarizational degrees of freedom”) 
associated with (3) (three for electric and three for magnetic 
fields), which can be used for communication in rich-
scattering environment. Of course, only two of them survive 
in free space (“poor scattering”). Hence, in a generic 
scattering case the number of polarizational degrees of 
freedom varies between 2 and 6, and each of them can be used 
for communication. Using the Fourier transform in time 
domain,  

( , ) ( , ) j tt e dt− ωφ ω = φ∫r r                     (4) 

(3) can be expressed as [5] 

( )22 ( , ) / ( , ) 0c∇ φ ω + ω φ ω =r r                  (5) 

where φ  denotes any of the components of E and H, r is a 
position vector and ω  is the frequency. For a given frequency 
ω  (i.e., narrowband assumption), (5) is a second-order partial 
differential equation in r. It determines φ  (for given boundary 
conditions, i.e. a Tx antenna configuration and scattering 
environment) and, ultimately, the channel matrix and the 
channel capacity. Note that (5) does not require for any 
significantly-restrictive assumptions. The source-free region 
assumption seems to be quite natural (i.e., Tx and Rx antennas 
are located in different points in space) and the narrowband 
assumption is simplifying but not restrictive since (5) can be 
solved for any frequency and, further, the capacity can be 
evaluated using well-known techniques. 

Unfortunately, the link between (5) and the channel matrix 
G is implicit. A convenient way to study this link is to use the 
space domain Fourier transform, i.e. the plane-wave spectrum 
expansion, 

( )
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           (6) 

where k  is the wave vector. Using (6), (5) can be reduced to 
[5] 

( )2 2( / ) ( , ) 0c− ω φ ω =k k                      (7) 

Hence, / c= ωk  and the electromagnetic filed is represented 
in terms of its plane-wave spectrum ( , )φ ωk , which in turn is 
determined through given boundary conditions, i.e. scattering 
environment and Tx antenna configuration. In the next 
sections, we discuss limitations imposed by (5)-(7) on the 
MIMO channel capacity. 
 

IV. THE LAWS OF ELECTROMAGNETISM 
 

The channel capacity is defined as the maximum mutual 
information [6], 

( ){ }
( )

max ,
p

C I=
x

x y                            (8) 

where x, y  are Tx and Rx vectors, and the maximum is taken 
over all possible transmitted vectors subject to the  total power 
constraint, x tP P+= ≤xx . Under some conditions, this 

results in (1). In order to study the impact of the 
electromagnetism laws on the channel capacity, we definite 
the spatial capacity S as the maximum mutual information 
between the Tx vector on one side and the pair of the Rx 
vector and the channel (assuming perfect CSI at the Rx) on 
the other, the maximum being taken over both the Tx vector 
and EM field distributions, 
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where, to be specific, we assumed that the electric field E is 
used to transmit data (H field can be used in the same way), B 
is the boundary condition (due to the scattering environment), 
and the last constraint is due to the boundary condition. The 
first constraint is the classical power constraint and the second 
one is due to the wave equation. The channel matrix G is a 
function of E since the electric field is used to send data. This 
maximum is difficult to find in general since one of the 
constraint is a partial differential equation with an arbitrary 
boundary condition. 

One may consider a reduced version of this problem by 
defining a spatial MIMO capacity as a maximum of the 
conventional MIMO channel capacity (per unit bandwidth, i.e. 
in bits/s/Hz) over possible propagation channels (including Tx 
& Rx antenna locations and scatterers’ distribution), subject to 
some possible constraints. In this case, the capacity is 
maximized by changing G (within some limits), for example, 
by appropriate positioning of antennas, 

( ){ } ( )max ,  const.:  MaxwellS C= ∈
G

G G S     (10) 

where the constraint ( )MaxwellS is due to the Maxwell 
(wave) equations. Unfortunately, the explicit form of this 
constraint is not known. Additional constraints may be 
included (due to a limited aperture, for example). Note that 
this definition will give a capacity, which is, in general, less 
than that in the first definition. 
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Using the analogy with the channel capacity definition, one 
can call this maximum (if it exists) “capacity of a given 
space” or “spatial capacity” (since we have to vary channel 
during this maximization the name “channel capacity” seems 
to be inappropriate simply because the channel is not fixed. 
On the other hand, we vary channel within some limits, i.e. 
within given space. Thus, the term “capacity of a given space”, 
or “spatial” capacity, seems to be appropriate). The question 
arises: what is this maximum and what are the main factors 
which have an impact on it? Using the ray tracing 
(geometrical optics) arguments and the recent result on the 
MIMO capacity, it can be further demonstrated that there 
exists an optimal distribution of scatterers and Tx/Rx antennas 
that provides the maximum possible capacity in a given region 
of space. Hence, the MIMO capacity per unit space volume 
can be defined in a fashion similar to the traditional definition 
of the channel capacity per unit bandwidth. 

Considering a specific scenario would not allow us to find 
a fundamental limit simply because the channel capacity 
would depend on too many specific parameters. For example, 
in outdoor environments the Tx and Rx ends of the system are 
usually located far away from each other. Hence, any MIMO 
capacity analysis (and optimization) must be carried out under 
the constrain that the Tx and Rx antennas cannot be located 
close to each other. However, there exists no fundamental 
limitation on the minimum distance between the Tx and Rx 
ends. Thus, this maximum capacity would not be a 
fundamental limit. In a similar way, a particular antenna 
design may limit the minimum distance between the antenna 
elements but it is just a design constrain rather than a 
fundamental limit. Similarly, the antenna design has an effect 
on the signal correlation (due to the coupling effect), but this 
effect is very design-specific and, hence, is not of fundamental 
nature. In other words, the link between the wave equations 
(3) or (7) and the channel matrix G is very implicit since a lot 
depends on Tx and Rx antenna designs and many other details. 

We further consider a reduced version of this problem. In 
particular, we investigate the case when the Tx and Rx 
antenna elements are constrained to be located within given 
Tx and Rx antenna apertures. We are looking for such 
location of antenna elements (within the given apertures) and 
such distribution of scatterers that the MIMO capacity 
(“spatial” capacity) is maximum. While this maximum may 
not be achievable in practice, it gives a good indication as to 
what the potential limits of MIMO technology are. 

In order to avoid the effect of design-specific details, we 
adopt the following assumptions. Firstly, we consider a 
limited antenna aperture size (1-D, 2-D or 3-D) for both the 
Tx and Rx antennas. All the Tx (Rx) antenna elements must 
be located within the Tx (Rx) aperture. As it is well-known, a 
rich scattering environment is required to order to achieve 
high MIMO capacity. Thus, secondly, the rich (“ideal”) 
scattering assumption is adopted in its most abstract form. 
Specifically, it is assumed that there is infinite number of 
randomly and uniformly-located ideal scatterers (the 
scattering coefficient equals to unity), which form a uniform 
scattering medium (“ideal” scattering) in the entire space 
(including the space region considered) and which do not 
absorb EM field. Thirdly, antenna array elements are 

considered to be ideal field sensors with no size and no 
coupling between the elements in the Rx (Tx) antenna array. 
Our goal is to find the maximum MIMO channel capacity in 
such a scenario (which posses no design-specific details) and 
the limits imposed by the electromagnetism laws. It should be 
emphasized that the effect of electromagnetism laws is 
already implicitly included in some of the assumptions above. 
In order to simplify analysis further, we use the ray 
(geometrical) optics approximation (this justifies the ideal 
scattering assumption above). 

Knowing that the capacity increases with the number of 
antennas, we try to use as many antennas as possible. Is there 
any limit to it? Since antennas have no size (by the 
assumption above), the given apertures can accommodate the 
infinite number of antennas. However, if antennas are located 
close to each other the channel correlation increases and, 
consequently, the capacity decreases. A certain minimum 
distance between antennas must be respected in order to avoid 
capacity decrease, even in ideal rich scattering [4]. This 
minimum distance is about half a wavelength. It should be 
noted that the model in [4] is a two-dimensional (2D) one. 
However, it can be applied to both orthogonal planes and, due 
to the symmetry of the problem (no preferred direction), the 
same result should hold in 3D as well. We note that, under the 
assumptions above, the angle-of-arrival (AOA) of multipath 
components is uniformly distributed over [ ]π2,0  in both 
planes. Thus, the model above can be applied and the 
minimum distance is about half a wavelength. Due to the 
assumption of uniform scattering media, all the antennas 
experience the same multipath environment. 

When we increase the number of antennas the capacity at 
first increases. But at some point, due to aperture limitation, 
we have to decrease the distance between adjacent antennas to 
accommodate new antennas within the given aperture. When 
the adjacent antenna spacing decreases, the capacity increase 
slows down and finally, when the antenna spacing is less than 
the minimum distance, the capacity begins to decrease. Hence, 
there is an optimal number of antennas, for which the capacity 
is maximum. An argument similar to the present one has 
already been presented earlier [8]. However, the optimal 
number of antennas has not been evaluated. Using the model 
in [4], which results in the minimum distance be equal to 
approximately half a wavelength, the optimal number Nopt of 
antennas for a given aperture size L is straightforward to 
evaluate (1-D aperture, i.e. linear antenna array): 

2 / 1optN L≈ λ +                              (11) 
where λ  is the wavelength. Similar expressions can be 
obtained for 2-D and 3-D apertures as well. This is consistent 
with the diversity combining analysis, where the minimum 
distance is about half a wavelength as well [10], and with an 
earlier speculation in [1]. 
 

V. SPATIAL SAMPLING AND MIMO CAPACITY 
 

In the previous section, we argued that the channel 
correlation limits the minimum antenna spacing to half a 
wavelength (even in the case of “ideal” scattering). In this 
section, we demonstrate that the same limit can be obtained 
directly from the wave equations (3) or (5), without refereeing 
to the channel correlation. 
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Let us start with the wave equation (5). The field spectrum 
),( ωφ k  can be computed in a general case provided there is a 

sufficient knowledge of the propagation channel and of the Tx 
antennas (note that we have not made so far any simplifying 
assumptions regarding the propagation channel). Knowing the 
field, which is given by the inverse Fourier transform in (6), 
and receive antenna properties, one may further compute the 
signal at the antenna output and, hence, the channel matrix G. 
The result will, of course, depend on the Rx antenna design 
details. In order to find a fundamental limit, imposed by the 
wave equations (5) on the channel capacity (1), we have to 
avoid any design-specific details. Thus, as earlier, we assume 
that the receive antennas are ideal field sensors (with no size, 
no coupling between antennas etc.) and, consequently, the 
signal at the antenna output is proportional to the field (any of 
the 6 field components may be used). Hence, the channel 
matrix entries ijg  must satisfy the same wave equation as the 
filed itself. In general, different Tx antennas will produce 
different plane-wave spectra around the Rx antennas and, 
hence, the wave equation is: 

( ) ( ) 0,/ 22 =




 − ωω kgk jc                   (12) 

where ),( ωkg ij   is the plane-wave spectrum produced by j-th 
Tx antenna. To simplify things further, we employ the 
narrowband assumption: .const=ω , and, hence, c/ω=k  is 
constant (the case of a frequency-selective channel can be 
analyzed in a similar way – see below). The channel matrix 
entries for given locations of the Rx antennas can be found 
using the inverse Fourier transform in the wave vector 
domain: 

( )
( )

( ) ( )ωω
π

ω ,  ,,
2

1,
3 ijij

j
jj gde rgkkgrg rk == ∫

⋅−   (13) 

where ir  is the position vector of i-th Rx antenna, and 
( )ω,rg j  is the channel “vector”, i.e. propagation factor from 

j-th Tx antenna to an Rx antenna located at position r. The 
integration in (13) is performed on a hypersurface c/ω=k . 
As we show below, it results in a very important consequence. 
Consider, for simplicity, 2-D case (3-D case can be considered 
in a similar way). In this case, the integration in (13) is 
performed along the line given by 

( ) ( ) 22222 // yxyx kckckk −±=→=+ ωω        (14) 

Assume that the Rx antenna is a linear array of elements 
located on the OX axis, i.e. 0=yr . In this case, (13) reduces 
to 
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         (15) 

where ck /max ω=  due to (14). We ignored the evanescent 
waves with maxkk >  because they decay exponentially and 
can be ignored at distances more than few λ  from the source 
[5]. Note that computing ijg  corresponds to sampling 

( )ω,xjg  with sampling points being xi. Let us now apply the 
Nyquist sampling theorem to (15). According to it, a band-
limited signal, ( )ω,xj kg  in our case (it is band-limited in kx-
domain) , can be exactly recovered from its samples taken at a 
rate equal at least to twice the maximum signal frequency 
(Nyquist rate) [6]. In our case, the Nyquist rate is max2k  and 
the sampling interval is 

( ) 2/2/2 maxmin λπ ==∆ kx            (16) 
where ωπλ /2 c=  is the wavelength. There is no any loss of 
information associated with the sampling since the original 
channel “vector” ( )ω,rg j  (as well as the field itself) can be 
recovered exactly from its samples at 

,...2,,0 minmin xxx ∆±∆±= . This means that by locating the 
field sensors at sampling points, which are separated by 

minx∆ , we are able to recover all the information transmitted 
by electromagnetic waves to the receiver. Hence, channel 
capacity is not altered. This means, in turn, that the minimum 
spacing between antennas is half a wavelength: 

2/minmin π=∆= xd     (17) 
Locating antennas more close to each other does not 

provide any additional information and, hence, does not 
increase the channel capacity. It should be noted that the same 
half-wavelength limit was established in Sec. IV using the 
channel correlation argument, i.e. locating antennas closer 
will increase correlation and, hence, capacity will decrease. 
However, while the channel correlation argument may 
produce some doubts as whether the limit is of fundamental 
nature or not (correlation depends on a scenario considered), 
the spatial sampling argument demonstrates explicitly that the 
limit is of fundamental nature because it follows directly from 
Maxwell equations (i.e., the wave equation), without any 
simplifying assumptions as, for example, the geometrical 
optics approximation [7] (when evaluating correlation, we 
have to use it to make ray tracing valid). Note that the spatial 
sampling arguments holds also for a broadband channel (the 
smallest wavelength, corresponding to the highest frequency, 
should be used in this case to find minx∆ ) and for the case of 
2-D and 3-D antenna apertures. However, in the latter two 
cases the minimum distance (i.e., the sampling interval) is 
different [11]. If one uses a 2-D antenna aperture (i.e. 2-D 
sampling), the sampling interval is 

3/2min, λ=∆x                           (18) 
and in the case of 3-D aperture, 

2/3min, λ=∆x .                          (19) 
While the minimum distance in these two cases is different 
from the 2-D case, 3min,2min,min xxx ∆<∆<∆  (i.e., each 
additional dimension possesses less degrees of freedom than 
the previous one), the numerical values are quite close to each 
other. 

Another interpretation of the minimum distance effect can 
be made through a concept of the number of degrees of 
freedom. As the sampling theorem argument shows, for any 
limited region of space (1-D, 2-D or 3-D), there is a limited 
number of degrees of freedom possessed by the EM field 
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itself. No any antenna design or their specific location can 
provide more. This is a fundamental limitation imposed by the 
laws of electromagnetism (Maxwell equations) on the MIMO 
channel capacity. 

An important note is in order on using the sampling theorem 
to find the minimum antenna spacing. The sampling theorem 
guarantees that the original band-limited function can be 
recovered from its samples provided that the infinite number 
of samples is used (band-limited function cannot be time 
limited!). Hence, the half wavelength limit, as derived using 
the sampling theorem, holds true only asymptotically, when 

∞→n . When n is finite, the optimal number of antennas 
may be larger than that given by (11), i.e. the minimum 
spacing may be less than half a wavelength because a slight 
oversampling is required to reduce the truncation error. The 
maximum truncation error of the sampling series for a given 
limited space region (i.e., the antenna aperture in our case) 
decreases to zero as the number of terms in the sampling 
series (i.e., the number of antennas in our case) increases and 
provided that there is a small oversampling [9]. In this case, 
one is able to recover almost all the information conveyed by 
the EM field to the antenna aperture (but not outside of the 
aperture). Hence, one may expect that the actual minimum 
antenna spacing is quite close to half a wavelength for a large 
number of antennas. The channel correlation argument, which 
roughly does not depend on n, also confirms this. Detailed 
analysis shows that the truncation error effect can be 
eliminated by approximately 10% increase in the number of 
antennas. Fig. 1 illustrates the effect of oversampling by 
considering the MIMO capacity versus the number of 
antennas for given (fixed) aperture length (linear antenna) 

λ5=L  for different realizations of an i.i.d. Rayleigh fading 
channel. Clearly, there exists a maximum number of antennas 

maxn ; using more antennas does not result in higher capacity 
for any channel realization. Remarkably, that this maximum is 
slightly larger than that in (11), i.e. spatial sampling and 
correlation arguments agree well.  

Keeping this in mind, one may say, based on the sampling 
theorem, that the optimal number of antennas for a given 
aperture size is given approximately by (11). Due to the 
reciprocity of (1), the same argument holds true for the 
transmit antennas as well. Hence, using (2) and (11) the 
maximum MIMO capacity can be found for a given aperture 
size. 
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Fig. 1 MIMO channel capacity versus the number of antennas for 

λ5=L . 

It should be noted that, in some cases, increasing n over 
Nopt in (11) may result in SNR increase due to antenna gain 
increase and, consequently, in logarithmic increase in capacity. 
However, this increase is very slow (logarithmic) and it does 
not occur if the SNR is fixed, i.e. when one factors out the 
effect of the antenna gain. Besides, the array antenna gain 
versus the number of elements for a fixed aperture is limited 
by the gain of a continuous antenna (with the same aperture). 
This limit is approximately 30% larger than the array gain at 

2/λ=d . Keeping in mind that the capacity depends 
logarithmically on SNR and, consequently, the antenna gain, 
we see that this increase in capacity is very small. 

It is interesting to note that the MIMO capacity analysis of 
waveguide channels, which is based on a rigorous 
electromagnetic approach and does not involve the usage of 
the sampling theorem, indicates that the minimum antenna 
spacing is about 2/λ  as well [12]. 

In many practical cases, the minimum spacing can be 
substantially larger than that in (17). For example, when all 
the multipath components arrive within a narrow angle spread 

1<<∆ , ( ) 2/2/min λλ >>∆≈d  [4]. Hence, less antennas can 
be accommodated within given aperture and, consequently, 
the MIMO capacity is smaller for a given aperture size. 
 

VI. MIMO CAPACITY OF WAVEGUIDE CHANNELS 
 

The case of an ideal waveguide MIMO channel is especially 
interesting because the relationship between information 
theory and electromagnetics manifests itself in the most clear 
form. 

The main idea for a waveguide channel is to use the 
eigenmodes (or simply modes) as independent sub-channels 
since they are orthogonal (if the waveguide is lossless and 
uniform) and it is well-known that the MIMO capacity is 
maximum for independent sub-channels. Since any field 
inside of the waveguide can be presented as a linear 
combination of the modes [5], the maximum number of 
independent sub-channels equals to the number of modes and 
there is no loss in capacity if all the modes are used. For lossy 
and/or non-uniform waveguide, there exist some coupling 
between the modes [5] and, hence, the capacity is smaller (due 
to the power loss as well as to the coupling). Thus, the 
capacity of a lossless waveguide will provide an upper bound 
for a true capacity since some loss and non-uniformity is 
always inevitable. It should be noted that if the coupling 
results in the sub-channel correlation less than approximately 
0.5, the capacity decrease is not significant [13]. We further 
assume that the waveguide is lossless and is matched at both 
ends. In this case, the transverse electric fields for two 
different E modes, or two different H modes, or one E and one 
H mode are mutually orthogonal [5] 

S
dS cµ ν µν= δ∫∫ E E ,                             (20) 

where the integral is over the waveguide cross-sectional area 
S, µ  and ν  are composite mode indices, µνδ  is Kronecker 
delta, and c is a constant (which depends on the power 
transmitted in each mode). (20) immediately suggests the 
system architecture to achieve the maximum MIMO capacity 
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Fig. 2 MIMO system architecture for a waveguide channel. 

 
 
using the modes: at the Tx end, all the possible modes are 
excited using any of the well-known techniques and at the Rx 
end the transverse electric field is measured on the waveguide 
cross-sectional area (proper spatial sampling may be used to 
reduce the number of field sensors) and is further correlated 
with the distribution functions of each mode, see Fig. 2. The 
signals at the correlator outputs are proportional to the 
corresponding transmitted signals since the modes are 
orthogonal and, hence, there is no cross-coupling between 
different Tx signals. Thus, the equivalent channel matrix (i.e., 
Tx end-Rx end-correlator outputs) is N=H I  (recall that the 
waveguide is assumed to be matched and lossless), where NI  
is NxN identity matrix, and the capacity achieves its 
maximum (2). Knowing the number of modes N, the 
maximum MIMO capacity can easily be evaluated. The 
maximum capacity (we call it further simply “capacity”) of 
the present MIMO architecture described above does not vary 
along the waveguide length and it increases with the number 
of modes, as one would intuitively expect. If not all the 
available modes are used, the capacity decreases accordingly. 
The capacity may also decrease if the Rx antennas measure 
the field at some specific points rather than the field 
distribution along the cross-sectional area (since the mode 
orthogonality cannot be efficiently used in this case). In order 
to evaluate the maximum capacity, we further evaluate the 
number of modes. 
 
A. Rectangular Waveguide Capacity 

 
Let us consider first a rectangular waveguide located along 

OZ axis (see Fig. 3). The field distribution at XY plane  
 

O 
y 

z x 

a 

b 

Tx end 

Rx end 

 
Fig. 3 Rectangular waveguide geometry. 

 

(cross-section) for E and H modes is given by well-known 
expressions [5] and the variation along the OZ axis is given by 

zjk ze− , where j is imaginary unit, and kz is the longitudinal 
component of the wavenumber: 

2 2 2
2 2

0
,    z mn mn

m nk
c a b

 ω π π   = − γ γ = +     
    

,      (21) 

where ω  is the frequency, c0 is the speed of light, and m and n 
designate the mode (note that E and H modes with the same 
(m,n) pair have the same mnγ ). The sign of kz is chosen in 
such a way that the filed propagates along OZ axis (i.e., from 
the Tx end to the Rx end). The case of /mn cγ > ω  
corresponds to the evanescent field, which decays 
exponentially with z and is negligible at few wavelength from 
the source [5]. Assuming that the Rx end is located is far 
enough from the Tx end (i.e., at least few wavelengths), we 
neglect the evanescent field. Hence, the maximum value of 

mnγ  is ,max /mn cγ = ω . This limits the number of modes that 
exist in the waveguide at given frequency ω . All the modes 
must satisfy the following inequality, which follows from 
(21): 

2 2
4m n

a b
   + ≤   ′ ′   

,                         (22) 

where / ,  /a a b b′ ′= λ = λ  and λ  is the free-space 
wavelength; and , 1,2,...m n = for E mode and 

, 0,1,...,  m+n 0m n = ≠  for H mode. Using a numerical 
procedure and (22), the number of modes N can be easily 
evaluated. A closed-from approximate expression can be 
obtained for large and a b′ ′  by observing that (22) is, in fact, 
an equation of ellipse in terms of (m,n) and all the allowed 
(m,n) pairs are located within the ellipse. Hence, the number 
of modes is given approximately by the ratio of areas: 

2 2
0

/ 4 222 e wS SabN
S

ππ≈ = =
λ λ

,                       (23) 

where 4eS a b′ ′= π  is the ellipse area, 0 1S =  is the area 
around each (m,n) pair, wS ab=  is the waveguide cross-
sectional area, the factor ¼ is due to the fact that only 
nonnegative m and n are considered, and the factor 2 is due to 
the contributions of both E and H modes. As (23) 
demonstrates, the number of modes is determined by the ratio 
of the waveguide cross-section area ab  to the wavelength 
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squared. As we will see further, this is true for a circular 
waveguide as well. Hence, one may conjecture that this is true 
for a waveguide of arbitrary cross-section as well. This 
conjecture seems to be consistent with the spatial sampling 
argument (2-D sampling must be considered in this case). In 
fact, (23) gives the number of degrees of freedom the 
rectangular waveguide is able to support and which can be 
further used for MIMO communication. Fig. 4 compares the 
exact number of modes computed numerically using (22) and 
the approximate number (23). As one may see, (23) is quite 
accurate when a and b are greater then approximately a 
wavelength. Note that the number of modes has a step-like 
behavior with /a λ , which is consistent with (22). Using (2) 
and (23), the maximum capacity of the rectangular waveguide 
channel can be easily evaluated. 

The analysis above assumes that the E-field (including both 
Ex and Ey components) is measured on the entire cross-
sectional area (or at a sufficient number of points to recover it 
using the sampling expansion). However, it may happen in 
practice that only one of the components is measured, or that 
the field is measured only along OX (or OY) axis. Apparently, 
it should lead to the decrease of the available modes. This is 
analysed below in details. 
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Fig. 4. Number of modes in a rectangular waveguide for a=b. 
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SNR=20 dB. 

Let us assume that the E-field (both components) is 
measured along the OX axis only (this corresponds to 1-D 
antenna array located along OX). Due to this limitation, one 
can compute the correlations at the Rx using the integration 
over OX axis only since the field distribution along OY axis is 
not known. Hence, we need to find the modes that are 
orthogonal in the following sense: 

0

a

I dx cµ ν µν= = δ∫E E ,                             (24) 

In this case, one finds that two different E-modes 
1 1m nE  and 

2 2m nE  are orthogonal provided that 1 2m m≠ ; if these modes 
have the same m index, they are not orthogonal. The same is 
true about two H-modes and about one E-mode and one H-
mode. This results in a substantial reduction of the number of 
orthogonal modes since, in the general case, two E-modes are 
orthogonal if at least one of the indices is different, i.e. if 

1 2m m≠  or 1 2n n≠ . Surprisingly, if one measures only Ex 
component in this case, the modes are still orthogonal 
provided that 1 2m m≠ . Hence, if the receive antenna array is 
located along OX axis, there is no need to measured Ey 
component – it does not provide any additional degrees of 
freedom, which can be used for MIMO communications 
(recall that only orthogonal modes can be used). The number 
of orthogonal modes can be evaluated using (22):  

4 /xN a≈ λ ,                                  (25) 

This corresponds to 2 /a λ  degrees of freedom for each (E 
and H) field. Note that this result is similar to that obtained 
using the spatial sampling argument, i.e., independent field 
samples (which are, in fact, the degrees of freedom) are 
located at / 2λ . 

The similar argument holds true when the receive array is 
located along OY axis. In this case two modes are orthogonal 
provided that 1 2n n≠  and there is also no need to measure the 
Ex component. The number of orthogonal modes is 
approximately 

4 /yN b≈ λ ,                                  (26) 

Fig. 5 shows the MIMO capacity of a rectangular waveguide 
(the same as in Fig. 3) for SNR 20 dBρ = . Note that the 
capacity saturates as /a λ  increases. This is because (2) 
saturates as well as N increases: 

lim / ln 2
N

C
→∞

= ρ                                    (27) 

C in (2) can be expanded as 

0

( 1)
ln 2 1

ii

i
C

i N

∞

=

ρ − ρ =  +  
∑                            (28) 

For large N, i.e. for small / Nρ , this series converges very 
fast and it can be approximated by first two terms: 
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1
ln 2 2

C
N

ρ ρ ≈ − 
 

                           (29) 

The capacity does not change substantially when the 
contribution of the 2nd term is small: 

max1
2

N N
N
ρ << ⇒ > ≈ ρ                            (30) 

Nmax is the maximum “reasonable” number of antennas 
(modes) for given SNR (or vice versa): if N increases above 
this number, the capacity does not increase significantly. It 
may be considered as a practical limit (since further increase 
in capacity is very small and it requires for very large increase 
in complexity). Using (23) and (25), one finds the maximum 
“reasonable” size of the waveguide for the case of 2-D and 1-
D arrays correspondingly: 

max max (2-D array),   (1-D OX array)
2 4

a aρ ρ≈ ≈
λ π λ

, (31) 

Note that Fig. 5 shows, in fact, the fundamental limit of the 
waveguide capacity, which is imposed jointly by the laws of 
information theory and electromagnetism. 

B. Rectangular Cavity Capacity 
 

The analysis of MIMO capacity in cavities is very different 
from that in waveguides in one important aspect. Namely, the 
modes of a cavity exist only for some finite discrete set of 
frequencies (recall that, as in the case of waveguide, we 
consider a lossless cavity). Hence, there may be no modes for 
an arbitrary frequency. To avoid this problem, we evaluate the 
number of modes for a given bandwidth, [ ]0 0,f f f f∈ ∆+ , 
starting at f0 . For a rectangular cavity, the wave vector must 
satisfy [5]: 

22 2 2
2

0

m n pk
a b c c

 π π π ω     = + + =       
       

,           (32) 

where c is the waveguide length (along OZ axis in Fig. 1), and 
p is a non-negative integer; , 1,2,3,...,  0,1, 2,...m n p= =  for E-
modes, and , 0, 2,3,...,  1,2,...m n p= =  for H-modes 
( 0m n= =  is not allowed). Noting that (32) is a equation of a 
sphere in terms of (m,n,p), the number of modes with 

[ ]0 0,k k k k∈ ∆+  can be found as the number of (m,n,p) points 
between two spheres with radiuses of 0k  and 0k k∆+  
correspondingly. Using the ratio of areas approach described 
above, the number of modes is approximately: 

3
0 0

/8 82 e c
c

V V fN
V f

π ∆≈ =
λ

,                       (33) 

where 24eV k k= π ∆  is the volume between the two spheres, 
3

0 / cV V= π  is the volume around each (m,n,p) point, 

cV abc=  is the cavity volume; factor 2 is due to two types of 
modes, and factor 1/8 is due to the fact that only nonnegative 
values of (m,n,p) are allowed. An important conclusion from 

(33) is that the number of modes is determined by the cavity 
volume expressed in terms of wavelength and by the 
normalized bandwidth. Detailed analysis shows that (33) is 
accurate for large a, b, and c, and if 0/ / 4c f fλ < ∆ .  

It should be noted that the mode orthogonality for cavities is 
expressed through the volume integral (over the entire 
waveguide volume), 

cV

dV cµ ν µν= δ∫∫∫E E ,                             (34) 

and, hence, all the modes are orthogonal provided that the 
field is measured along all 3 dimensions, which, in turn, 
means that a 3-D arrays must be used, which may not be 
feasible in practice. If only 2-D arrays are used, then the mode 
orthogonality is expressed as for a waveguide, i.e. (20), and, 
consequently, only those modes are orthogonal that have 
different (m,n) indices. The use of a 2-D array results in 
significant reductions of the number of modes for large c, as 
Fig. 6 demonstrates. Note that for small c, there is no loss in 
the number of orthogonal modes. This is because different p 
correspond in this case to different (m,n) pairs (this can also 
be seen from (32)). However, as c increases, different p may 
include the same (m,n) pairs, which results in the number loss 
if a 2-D array is used. In fact, the 2-D case with large c is the 
same as the waveguide case (with the same cross-sectional 
area), as it should be. The value of c for which the cavity has 
the same number of orthogonal modes as the corresponding 
waveguide can be found from the following equation: 

0
4

t
c w

c fN N
f

≈ ⇒ =
λ ∆

,                       (35) 

Hence, if 2-D antenna arrays are used and tc c≥ , the 
waveguide model provides approximately the same results as 
the cavity model does, i.e. the cross-section has the major 
impact on the capacity, while the effect of cavity length is 
negligible. The waveguide model should be used to evaluate 
the number of orthogonal modes (and capacity) in this case  
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because it is more simple to deal with. For example, a long 
corridor can be modelled as a waveguide rather than cavity  
(despite of the fact that it is closed and looks like a cavity). 
Fig. 6 shows the capacity in the cavity. While the capacity of 
a 2-D array system saturates like the waveguide capacity, 
which is limited by a and b, the capacity of a 3-D system is 
larger and saturates at the value given by (27). It should be 
noted that (27) is the capacity limit due to the information 
theory laws, and (23), (25), (26), and (33) are the capacity 
limits due to the laws of electromagnetism (i.e., limited due to 
the number of degrees of freedom of the EM field). 
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