
Mikrotalasna revija Jun 2006.

Application of Neural Networks:
Enhancing Efficiency of Microwave Design

Petr Šmíd, Zbyněk Raida

Abstract – The paper describes the methodology of the auto-

mated creation of neural models of microwave structures. Du-
ring the creation process, artificial neural networks are trained
using the combination of the particle swarm optimization and the
quasi-Newton method to avoid critical training problems of the
conventional neural nets.

Neural models are required being wideband. In order to meet
this requirement, feed-forward neural networks and recurrent
ones are used for modelling, and their properties are in detail
mutually compared.

In the paper, neural networks are used to approximate beha-
viour of a planar microwave filter (moment method, Zeland
IE3D). In order to evaluate the efficiency of neural modelling,
global optimizations are performed using numerical models and
neural ones. Both approaches are compared from the viewpoint
of CPU-time demands and accuracy. Considering conclusions,
methodological recommendations for including neural networks
to microwave design are formulated.

Keywords – Feed-forward neural networks, recurrent neural
networks, quasi-Newton methods, particle swarm optimization.

I. INTRODUCTION

Modern communication services require wider and wider
frequency bands for their operation. Since lower frequency
bands are out of their capacity today, broadband services have
to operate on higher microwave frequencies.

Designing broadband microwave communication systems,
efficient modelling tools are required. These modelling tools
have to be based on the numeric solution of Maxwell’s equ-
ations. Using the frequency-domain approach (a harmonic
steady state is assumed); a broadband microwave structure has
to be analyzed on each harmonics from the examined frequ-
ency band separately in order to characterize the structure.
Numerical analysis in the frequency domain is therefore rather
time-consuming, which complicates their potential usage in
complex design tools. Numerical models are therefore to be
replaced by closed-form approximate formulae [1]–[3], or by
neural models [4]–[6].

Neural networks are electronic systems, which are built
according to a human brain: they contain a large number of
the same non-linear building blocks (neurons), they are highly
parallel, they are organized in layers, and they are able to
learn [7], [8]. The structure of a typical neural network is de-
picted in Fig. 1.

Neurons in the network (circles in Fig. 1) perform a few basic
mathematical operations only: they multiply incoming signals
by variable coefficients (synaptic weights wi,j(n) and thres-
holds bi(n)), they sum the products and evaluate a non-linear
function for the sum of products [4]. Hence, the neuron ope-
ration is computationally efficient.

Since the neural network is able to learn, we can train it to
behave a similar way as a numerical model. Therefore, a pro-
perly trained neural network can replace a computationally
inefficient numerical model in the design tools.

input
layer

hidden output
layer

w

w

w

w

b

w

w

w

w

w
w

w

1,1

2,1

1,2

(1)

1,3

2,2

2,3

1

2

(1)

(1)

(1)

(1)

(1)

b

b

(1)

(1)

(1)
3

w

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

1,1

2,1

3,1

1,2

2,2

1

3,2
2

b

b

Fig. 1. An example of an artificial neural network. The symbol

wi,j(n) denotes a synaptic weight between the output of the ith
neuron in the layer (n–1) and the input of jth neuron in the la-
yer n. The symbol bi

(n) denotes a threshold of the ith neuron in
the nth layer.

The training procedure consists of the following steps:
• Creating training patterns. Using a numerical method, the

structure is analyzed for various dimensions and dielectric
constants (various state variables). Combinations of state
variables form the input patterns, corresponding computed
parameters (impedances, scattering parameters, etc.) form
the output targets. An input pattern and an output target
give a training pattern together. All the training patterns
form the training set.

• Building neural network. We create a neural network con-
sisting of an estimated number of layers and of an estimated
number of neurons in the layers (see Fig. 1). The number of
neurons in the input layer is given by the number of state
variables; the number of neurons in the output layer is de-
termined by the number of computed parameters. The num-
ber of hidden layers and hidden neurons has to be estima-
ted. Synaptic weights and biases are set randomly.

• Training neural network. During the training, input patterns
are successively introduced into the inputs of the neural
network, and synaptic weights are changed to reach desired
output responses. The training is finished when the network
reacts properly to all input patterns from the training set.

Petr Šmíd and Zbyněk Raida are with the Faculty of Electrical
Engineering and Communication, Brno University of Technology,
Purkyňova 118, CZ-61200 Brno, the Czech Republic, E-mail:
raida@feec.vutbr.cz, xsmidp01@stud.feec.vutbr.cz

2

June, 2006 Microwave Review

• Verifying neural model. We introduce such patterns to the

inputs of the neural model, which differ from the input pat-
terns of the training set. Exploiting the numerical model,
correctness of the response of the network is verified. If the
response is incorrect, additional training patterns have to be
prepared, and training is repeated over a larger training set.

• Using neural model. The trained neural network produces
output responses with a sufficient accuracy both for training
patterns and for interlaying input patterns. Therefore, the
neural network can replace the numerical model.
The trained neural network provides a special approxima-

tion in a fact: the exact results of the numerical analysis which
are hidden in the training patterns are used for neural compu-
ting approximate results, which correspond to input parame-
ters differing from input patterns. That way, a computationally
modest neural network can replace a numerical analysis for
parameters differing from training patterns.

In Section II, the described methodology is illustrated by
developing a neural model of a planar stepped-impedance
three-pole low-pass filter exploiting a feed-forward neural
network and a recurrent one. Various algorithms are applied
to reach an accurate training. The training procedures are dis-
cussed from the viewpoint of CPU-time demands and reached
accuracies.

In Section III, the finished neural models are associated
with global optimization techniques to verify approximation
abilities and evaluate computational demands of neural nets.
The obtained results are confronted with the optimization ba-
sed on numeric modelling.

Section IV concludes the paper.

II. NEURAL MODELS OF A PLANAR FILTER

A. Filter Description

In order to examine different approaches to the neural mo-
delling of microwave structures, a simple planar filter is as-
sumed. We consider a stepped-impedance three-pole low-pass
filter with Chebychev response (Fig. 2). The cut-off frequency
is fc = 1 GHz, the pass-band ripple equals to 0.1 dB, and the
source/load impedance is Z0 = 50 Ω. The filter is etched on the
substrate with the dielectric constant εr = 10.8, and with the
height h = 1.27 mm.

w w

w

L

l

0

L

C

Cl
Fig. 2. A stepped-impedance three-pole low-pass filter with

Chebychev response. The width of the inductive segment wL,
and the width of the capacitive segment wC are state variables
of the filter.

The width of the input/output microstrip line equals to w0 =
= 1.1 mm to get the characteristic impedance Z0 = 50 Ω on the
cut-off frequency.

Initially, we set the dimensions of the reactive segments of
the filter to the following values:
• The length and the width of the inductive segments are lL =

= 9.81 mm, and wL0 = 0.20 mm, respectively.
• The length and the width of the capacitive segments are lC =

= 7.11 mm, and wC0 = 4.00 mm, respectively.
Around the point [wL0, wC0], we wish to approximate the

dependence of the filter forward gain s21(wL, wC, f) for the
fixed lengths of inductive segments lL = 9.81 mm and the ca-
pacitive one lC = 7.11 mm, changing the frequency from the
cut-off one fc = 1.0 GHz to fmax = 5.0 GHz. First, the depen-
dence is approximated by a feed-forward neural network, and
second, we try to repeat the modelling procedure exploiting
a recurrent neural network [5], [7], [8].

B. Feed-Forward Neural Model

Feed-forward neural networks are characteristic by a direct
signal flow from the input layer to the output one without any
feedback. Therefore, this type of networks simply statically
maps input patterns to output targets.

(f)s

f

wL

wC

b)

Σ

wi

a)

21

Fig. 3. a) Architecture of a feed-forward neural network for mo-
delling a stepped-impedance three-pole low-pass filter with
Chebychev response. Input layer consists of input neurons
(squares). Other layers contain adaptive non-linear neurons
(circles). b) Structure of an adaptive non-linear neuron.

The neural model is built to map the triplets [wL, wC, fn] to
the filter forward gain on the frequencies fn, i.e. s21(fn). There-
fore, the neural network consists of three input neurons (distri-
buting nodes) and a single output one.

The initial (coarse) training set containing 60 training pat-
terns consists of all the combinations of wL ∈ {0.10, 0.30,
0.50} mm, wC ∈ {2.00, 4.00, 6.00, 8.00} mm, and f ∈ {1.0,
2.0, 3.0, 4.0, 5.0} GHz, which are completed by the corres-
ponding values of the filter forward gain s21(wL, wC, f) compu-
ted by Zeland IE3D.

Next, we have to estimate a proper number of hidden layers
of the network, and a proper number of neurons in those la-
yers (i.e., we search for a proper size of the distributed memo-
ry to store information about the filter behaviour in the space
[wL, wC, f]). The number of hidden layers, and the number of
neurons in them, is usually estimated by Bayesian regulari-

3

Mikrotalasna revija Jun 2006.

zation [9]. In our case, the regularization proposes two hidden
layers, which contain six neurons each, as the optimal network
architecture. Using a larger network, an overtraining can ap-
pear (in between the training patterns, the neural approxima-
tion oscillate).

An initial training of the network is performed by applying
the particle swarm optimization [10] in order to reveal global
minima of the error function of the neural network (the diffe-
rence between the actual network response, and the desired
one – given by the training pattern). The training process is
started with the following parameters: the number of particles
is set to M = 50, absorbing walls are used on the boundaries of
the training region, and the length of a single training process
is limited by 150 iterations. The pre-training convergence for
the initial feed-forward neural network is depicted in Fig. 4.

0 50 100
10

-2

10 -1

e [-]

iteration

Fig. 4. Particle swarm optimization pre-training convergence
for the initial feed-forward neural network configuration.

The global training moves the state vector of the neural
network (synaptic weights and thresholds) in a vicinity of
a global minimum of the error function. Using the particle
swarm optimization for the global training, the neural model
reaches the value of the mean squared error over all training
patterns equal to e = 3.95 ⋅ 10-2, and the pre-training process
takes t = 5.30 s of the CPU time when using the regular PC
equipped by AMD Athlon 2700+, 512 MB RAM, Windows
XP, and MATLAB 6.1.

0 10 20 30 40 50
10-7

10-6

10-5

10-4

10
-3

e [-]

iteration

Fig. 5. Levenberg-Marquardt refinement training convergence
for the initial feed-forward neural network configuration.

In the following step, training of the neural model is refined
applying Levenberg-Marquardt method [11]. I.e., a local opti-
mization method is used to move the state vector from the
point in the vicinity of the global optimum to the global opti-
mum. Time response of the training error is shown in Fig. 5.
After 68 iterations, the training error equals to e = 8.00 ⋅·10-7
(the network refinement is stopped when the error drops be-
low the prescribed limit emax = 10-6). The refinement training
consumes 2.06 s of the CPU time.

1 2 3 4
2

4

6

8

10

e [%]

f [GHz]

Fig. 6. The maximum approximation error of the neural model
for wL = 0.20 mm, and wC = 4.00 mm (the worst case) for the
initial feed-forward neural network configuration.

In order to evaluate the model accuracy, a set of testing pat-
terns is compiled. The testing set enriches the training one by
the interlaying patterns in order to test the approximation abi-
lities of the neural model outside the training points also. The
testing set contains 315 patterns.

The worst case, when the model error reaches the highest
values, appears for the width of the inductive segment wL =
= 0.20 mm, and for the width of the capacitive segment wC =
= 4.00 mm. In Fig. 6, the error is depicted as a frequency de-
pendent quantity.

0 50 100
10-2

10 -1

e [-]

iteration

Fig. 7. Particle swarm optimization pre-training convergence
for the refined feed-forward neural network configuration.

Since the approximation error is unacceptably high (up to
14 %), a refined model is going to be trained. Therefore,
a new training set has to be prepared, which contains more

4

June, 2006 Microwave Review

training patterns (441 compared to 60 in the initial training
set). The width of inductive segments wL ∈ <0.05, 0.65> mm
is sampled now with the step ∆wL = 0.10 mm (compared to
∆wL = 0.20 mm in the initial training), and the width of capa-
citive segments wC ∈ <2.00, 8.00> mm is sampled now with
the step ∆wC = 1.00 mm (compared to ∆wC = 2.00 mm in the
initial training). The frequency f ∈ <1.0, 5.0> GHz is sampled
with the step ∆f = 0.5 GHz (compared to ∆f = 1.0 GHz in the
initial training).

0 100 200 300 400
10

-6

10-5

10
-4

10-3

e [-]

iteration

Fig. 8. Levenberg-Marquardt refinement training convergence
for the refined feed-forward neural network configuration

Applying Bayesian regularization, the optimal number of
hidden neurons is estimated to ten in two hidden layers each.

The pre-training error after 150 iterations is e = 3.14 ⋅·10-2
with the CPU time consumption t = 19.1 s (Fig. 7). Training
of the neural model is stopped when the training error drops
bellow 10-6 after 509 iterations, which takes 54.5 s (Fig. 8).

Error of the new neural model over the refined testing set
reaches maximum values at wL = 0.02 mm and wC = 8.00 mm.
The highest error is lower than 3 % (Fig. 9).

2

1

1 2 3 4
0

e [%]

f [GHz]

Fig. 9. The maximum approximation error of the neural model
for wL = 0.05 mm, and wC = 8.00 mm (the worst case) for the
refined feed-forward neural network configuration.

We can conclude that the refined neural model of the step-
ped-impedance three-pole low-pass filter can fully replace the
numeric one – the maximum error below 3 % is comparable to
the accuracy of numerical models and measurements.

C. Recurrent Neural Model

Recurrent neural networks are characteristic by feedbacks
in their structure (see Fig. 10). Due to these feedbacks, the
recurrent neural network is able to map an input sequence into
an output one. In case of modelling a stepped-impedance
three-pole low-pass filter with Chebychev response, doublets
of widths wL and wC can play the role of input patterns, and
a sequence of filter forward gains on prescribed frequencies
s21 is a target sequence.

w

w

L

C

s , s , ..., s21,1 21,2 21,N

a)

Σ

wi

b) wm
D

Fig. 10. a) Architecture of a recurrent neural network for model-

ling a stepped-impedance three-pole low-pass filter with Che-
bychev response. The input layer consists of input neurons
(squares). In a hidden layer, adaptive non-linear feedback
neurons are used (hatched circles). The output layer consists
of usual adaptive non-linear neurons. b) Structure of an adap-
tive non-linear feedback neuron (D denotes a delay block).

Structure of the recurrent model of the filter is depicted in
Fig. 10. The input layer consists of two neurons (the input for
frequency was removed); the output layer is identical with the
output of the feed-forward neural network. Dealing with hid-
den layers, recurrent networks contain a single hidden layer of
feedback neurons.

0 50 100
10

-2

10-1

e [-]

iteration

Fig. 11. Particle swarm optimization pre-training convergence
for the initial recurrent neural network configuration.

The neural model reacts on an input doublet recurrently,
and provides a sequence of values of the filter forward gain s21
(a series of forward gains on the frequencies of interest). This

5

Mikrotalasna revija Jun 2006.

is the most important difference between the feed-forward
neural model and the recurrent one. Otherwise, the methodo-
logy of building a recurrent neural model of the filter stays
unchanged:
1. A coarse training set for the initial training of the recurrent

network is similar compared to the training set used for
training the feed-forward model. We only complete the
input patterns by zeros in time to obtain input sequences,
and we divide a single training iteration to several periods.
In a period, the network is trained using 5 training patterns
(5 frequencies) corresponding to a single doublet [wL, wC].
In this sense, we can consider the training set consisting of
60 patterns (identical with the coarse training set of the
feed-forward neural network).

2. Respecting the size of the training set, the number of hid-
den neurons in the recurrent layer has to be estimated in
order to prepare large enough distributed memory for sa-
ving the information. Applying Bayesian regularization, six
neurons in the recurrent layer seems to be optimal.

3. In order to move the state vector of the network towards
the global minimum of the error function, the particle
swarm pre-training is applied using the same parameters
like in case of the feed-forward neural model. After pre-
training, the mean squared error reaches the value e = 0.030
in 68.90 seconds. The time course of the pre-training pro-
cess is depicted in Fig. 11.

4. When the state vector of the neural network is in the vicini-
ty of the global minimum of the error function, Levenberg-
Marquardt algorithm is applied to move the state vector to
the global minimum.

-210

0 200 400 600 800
10-3

e [-]

iteration

Fig. 12. Levenberg-Marquardt refinement training convergence
for the initial recurrent neural network configuration.

Unfortunately, in case of the recurrent neural model, Le-
venberg-Marquardt algorithm was not able to reach the pre-
scribed level of the error function epr = 10-6, and stopped after
1200 iterations on the level e = 2.30 ⋅ 10-3. The time passed
was t = 26.09 s. Time response of the error during training is
depicted in Fig. 12.

The percentage error of the recurrent neural model over the
testing set reaches the maximum value about 48 % for the
worst case wL = 0.50 mm and wC = 6.00 mm (see Fig. 13).

Considering the feed-forward model trained over the initial,
coarse training set, the maximum approximation error was

more than three-times lower (14 %), pre-training consumed
less than 10 % of the pre-training time of the recurrent model
(5.30 s versus 68.90 s), and also the refinement consumed less
than 10 % of the refinement time of the recurrent model (2.06
seconds versus 26.09 ones).

Now, we are going to investigate whether abilities of the
recurrent network can be improved using a denser training set.

1 2 3 4
5

10

15

20

25

30

35

e [%]

f [GHz]

Fig. 13. The maximum approximation error of the neural model
for wL = 0.50 mm, and wC = 6.00 mm (the worst case) for the
initial recurrent neural network configuration.

A denser training set was identical with the set for training
the feed-forward model: 441 combinations of the widths of
inductive segments wL ∈ <0.05, 0.65> mm sampled with the
step ∆wL = 0.10 mm, and the widths of capacitive segments
wC ∈ <2.00, 8.00> mm sampled with the step ∆wC = 1.00 mm.
The frequency f ∈ <1.0, 5.0> GHz was sampled with the step
∆f = 0.5 GHz (compared to ∆f = 1.0 GHz in the initial training
set).

0 50 100
10 -2

10 -1

e [-]

iteration

Fig. 14. Particle swarm optimization pre-training convergence
for the refined recurrent neural network configuration.

A larger neural network contains 11 hidden neurons in
a single layer. The model pre-training error after t = 465 s
equals to e = 3.84 ⋅ 10-2 (Fig. 14). The training process is stop-
ped after 1200 iterations (t = 272.0 s) without satisfactory re-
sults. The training error is e = 1.59 ⋅ 10-2 (Fig. 15).

The error of the refined recurrent model over the enriched

6

June, 2006 Microwave Review

testing set is still high, especially for wL = 0.05 mm and wC =
= 5.50 mm. The highest value of the percentage error reaches
up to 55 % at the frequency f = 5.0 GHz (see Fig. 16).

0 200 400 600 800
10-2

10-1

e [-]

iteration

Fig. 15. Levenberg-Marquardt refinement training convergence
for the refined recurrent neural network configuration.

Obviously, the enrichment of the training set caused further
degradation of the recurrent neural model of the filter.

1 2 3 4
0

10

20

30

40
e [%]

f [GHz]

Fig. 16. The maximum approximation error of the neural model
for wL = 0.05 mm, and wC = 8.00 mm (the worst case) for the
refined recurrent neural network configuration.

We can therefore conclude that recurrent neural networks
are not suitable for modelling electromagnetic structures in
a relatively narrow band of frequencies.

III. OPTIMIZATION

In Section II, we discussed CPU-time demands of building
neural models of microwave structures. Now, we are interes-
ted in CPU-time demands of the neural nets in the role of
a model. The neural network is therefore associated with an
optimization routine, and is used for the design of a filter.

The optimization is asked to find an inductive segment
width wL and a capacitive segment width wC so that the filter
can meet target values of the forward gain at f1 = 1 GHz:
s21(f1) = –0.1 dB, at f2 = 2 GHz: s21(f2) = –10 dB, and at f3 =
= 3 GHz: s21(f3) = –15 dB.

The objective function is minimized by particle swarm met-
hod with M = 30 particles and absorbing walls on the bounda-
ries. Due to the random initial values of the inductive segment
width wL and the capacitive segment width wC, each training
process is run five times, and the learning error is averaged.
Therefore, the length of optimization is fixed (80 iterations).

The convergence of optimization exploiting the feed-for-
ward neural model of the planar filter is depicted in Fig. 17.
There are three curves in the figure: the time course of criteria
function of the best run of the optimization process (dotted
line), the worst run (dashed line), and the average run (solid
line). The best, the worst and the averaged cases are sorted
according to the criteria function value after the last iteration.

After 80 iterations, the value of the criteria function stays
constant on the level e = 2.5 ⋅ 10-3. This corresponds with the
inductive segment width wL = 0.10 mm and the capacitive
segment one wC = 3.91 mm. The optimal widths of segments
are found in 0.062 s of the CPU time.

The optimization was asked to yield the filter forward gains
s21 = {–0.1, –10.0, –15.0} dB on frequencies f = {1.0, 2.0,
3.0} GHz. Analyzing the optimized filter values of the s21 pa-
rameter, the reached values of the filter forward gain are s21 =
= {–0.57, –9.67, –13.63} dB on respective frequencies.

0 20 40 60
10-3

10-2

iteration

e [-]

average
the best
the worst

Fig. 17. Convergence of the particle swarm optimization of the

low-pass planar filter exploiting feed-forward refined neural
model.

In order to verify the neural design, we use Zeland IE3D in
order to perform the full-wave analysis of the original filter
(wL =0.20 mm, wC = 4.00 mm), and the optimized one (wL =
= 0.10 mm, wC = 3.91 mm).

The obtained filter characteristics are depicted in Fig. 18.
Obviously, the neural design provides quite good results.

Due to the unsuccessful training of the recurrent model, the
optimization based on that model will provide wrong results:
we therefore do not use this model in conjunction with the
particle swarm optimization.

In order to demonstrate the strength of the neural design,
we repeat the whole optimization using Zeland IE3D to eva-
luate the criteria function in each iteration step of the optimi-
zation. The convergence of the full-wave design is depicted in
Fig. 19, and the obtained optimal widths are wL = 0.10 mm,
wC = 3.94 mm, compared to initial ones wL =0.20 mm, wC =
4.00 mm, and neural ones wL =0.10 mm, wC = 3.91 mm.

7

Mikrotalasna revija Jun 2006.

a)

b)

Fig. 18. Frequency response of the reflection coefficient at the

filter input s11, and the filter forward gain s21. a) The original
filter. b) The optimized filter (particle swarm optimization
plus the refined feed-forward neural model). Computed by
Zeland IE3D.

After 80 iterations, the value of the criteria function stays
constant on the level e = 1.6 ⋅ 10-3. In case of the full-wave
optimization, the CPU time consumptions were t = 5 597 s.

0 10 20 30 40 50 60
10-3

10-2

iteration

e [-]

average
the best
the worst

Fig. 19. Convergence of the particle swarm optimization of the

low-pass planar filter exploiting full-wave numeric model
(Zeland IE3D).

The optimization was asked to yield the filter forward gains
s21 = {–0.1, –10.0, –15.0} dB on frequencies f = {1.0, 2.0,
3.0} GHz. Analyzing the optimized filter values of the s21 pa-
rameter, the reached values of the filter forward gain are s21 =

= {–0.33, –9.81, –13.163} dB on respective frequencies. Ob-
viously, the numeric result is quite close to the neural one.

We can therefore conclude that the refined feed-forward
neural model of the filter can successfully replace the full-
wave numeric model of the filter in the global optimization
procedure.

Whereas the neural design consumed 0.062 s of the CPU
time during the global optimization, the full-wave design re-
quired 5 597 s for the same purpose.

IV. CONCLUSIONS

Comparing the results, the feed-forward neural model
trained by the particle swarm method and Levenberg-Mar-
quardt algorithm is the fastest and sufficiently accurate ap-
proach to model a low-pass planar filter specified above.
Using the neural model in the global optimization procedure,
the CPU-time consumed by the numerical model of the filter
is more than 90 thousand times demanding compared to the
neural one.

Note that training and optimisation methods were imple-
mented in MATLAB 6.1 on a regular PC equipped by the
processor Athlon XP 2700+, by 512 MB of RAM, and run
under Windows XP.

The recurrent model was not able to be trained with the
sufficient accuracy. We therefore concluded that such a type
of neural networks is not suitable for this kind of modelling
tasks.

TABLE I
OPTIMIZATION RESULTS

original feed-forw. IE3D
wL [mm] 0.20 0.10 0.10
wC [mm] 0.40 3.91 3.95
training - 73.6 -

otimizing - 0.062 5597 target
1 GHz s 21 [dB] -0.23 -0.32 -0.33 -0.10
2 GHz s 21 [dB] -7.47 -9.71 -9.83 -10.00
3 GHz s 21 [dB] -10.51 -13.12 -13.17 -15.00

optimized
variables

time [s]

ACKNOWLEDGEMENT

The research was supported by the Czech Grant Agency
under the projects no. 102/04/1079 and 102/03/H086, and by
the Czech Ministry of Education under the research plan no.
MSM 0021630513.

REFERENCES

[1] V. Akan and E. Yazgan, “Quasi-static solutions of multilayer
elliptical, cylindrical coplanar striplines and multilayer coplanar
striplines with finite dielectric dimensions – asymmetrical ca-
se”, IEEE Transactions on Microwave Theory and Techniques,
vol. 53, no. 12, pp. 3681–3686, 2005.

[2] P. Pramanick, and P. Bhartia, “A new model for the apparent
characteristic impedance of finned waveguide and finlines”,
IEEE Transactions on Microwave Theory and Techniques, vol.
34, no. 12, pp. 1437–1441, 1986.

8

June, 2006 Microwave Review

[3] J. Perini, “Periodically loaded transmission lines”, IEEE Trans-

actions on Microwave Theory and Techniques, vol. 28, no. 9,
pp. 1029–1031, 1980.

[4] M. Isaksson, D. Wisell, and D. Ronnow, “Wide-band dynamic
modeling of power amplifiers using radial-basis function neural
networks”, IEEE Transactions on Microwave Theory and Tech-
niques, vol. 53, no. 11, pp. 3422–3428, 2005.

[5] Z. Raida, “Modeling EM structures in Neural network toolbox
of Matlab”, IEEE Antennas and Propagation Magazine, vol.
44, no. 6, pp. 46–67, 2002.

[6] G. L. Creech, B. J. Paul, C. D. Lesniak, T. J. Jenkins, and M. C.
Calcatera, “Artificial neural networks for fast and accurate EM-
CAD of microwave circuits”, IEEE Transactions on Microwave
Theory and Techniques, vol. 45, no. 5, pp. 794–802, 1997.

[7] S. Haykin, Neural networks: A comprehensive foundation,
Englewood Cliffs, Macmillan Publishing Company, 1994.

[8] A. Cichocki, and R. Unbehauen, Neural networks for optimi-
zation and signal processing, Chichester, J. Wiley & Sons,
1994.

[9] H. Demuth and M. Beale, Neural Network Toolbox for Use
with Matlab: User's Guide (version 4), Natick, The MathWorks
Inc., 2000.

[10] J. Robinson, and Y. Rahmat-Samii, Particle swarm optimiza-
tion in electromagnetics. IEEE Transactions on Antennas and
Propagation, vol. 52, no. 2, pp. 397–407, 2004.

[11] P. E. Gill, W. Murray, M. H. Wright, Practical Optimization,
London, Academic Press, 1981.

9

