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Application of Neural Networks: 
Enhancing Efficiency of Microwave Design 

Petr Šmíd, Zbyněk Raida 

 
Abstract – The paper describes the methodology of the auto-

mated creation of neural models of microwave structures. Du-
ring the creation process, artificial neural networks are trained 
using the combination of the particle swarm optimization and the 
quasi-Newton method to avoid critical training problems of the 
conventional neural nets. 

Neural models are required being wideband. In order to meet 
this requirement, feed-forward neural networks and recurrent 
ones are used for modelling, and their properties are in detail 
mutually compared. 

In the paper, neural networks are used to approximate beha-
viour of a planar microwave filter (moment method, Zeland 
IE3D). In order to evaluate the efficiency of neural modelling, 
global optimizations are performed using numerical models and 
neural ones. Both approaches are compared from the viewpoint 
of CPU-time demands and accuracy. Considering conclusions, 
methodological recommendations for including neural networks 
to microwave design are formulated. 

Keywords – Feed-forward neural networks, recurrent neural 
networks, quasi-Newton methods, particle swarm optimization. 

I. INTRODUCTION 

Modern communication services require wider and wider 
frequency bands for their operation. Since lower frequency 
bands are out of their capacity today, broadband services have 
to operate on higher microwave frequencies. 

Designing broadband microwave communication systems, 
efficient modelling tools are required. These modelling tools 
have to be based on the numeric solution of Maxwell’s equ-
ations. Using the frequency-domain approach (a harmonic 
steady state is assumed); a broadband microwave structure has 
to be analyzed on each harmonics from the examined frequ-
ency band separately in order to characterize the structure. 
Numerical analysis in the frequency domain is therefore rather 
time-consuming, which complicates their potential usage in 
complex design tools. Numerical models are therefore to be 
replaced by closed-form approximate formulae [1]–[3], or by 
neural models [4]–[6]. 

Neural networks are electronic systems, which are built 
according to a human brain: they contain a large number of 
the same non-linear building blocks (neurons), they are highly 
parallel, they are organized in layers, and they are able to 
learn [7], [8]. The structure of a typical neural network is de-
picted in Fig. 1. 

Neurons in the network (circles in Fig. 1) perform a few basic 
mathematical operations only: they multiply incoming signals 
by variable coefficients (synaptic weights wi,j(n) and thres-
holds bi(n) ), they sum the products and evaluate a non-linear 
function for the sum of products [4]. Hence, the neuron ope-
ration is computationally efficient. 

Since the neural network is able to learn, we can train it to 
behave a similar way as a numerical model. Therefore, a pro-
perly trained neural network can replace a computationally 
inefficient numerical model in the design tools. 
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Fig. 1.  An example of an artificial neural network. The symbol 

wi,j(n) denotes a synaptic weight between the output of the ith 
neuron in the layer (n–1) and the input of jth neuron in the la-
yer n. The symbol bi

(n) denotes a threshold of the ith neuron in 
the nth layer. 

The training procedure consists of the following steps: 
• Creating training patterns. Using a numerical method, the 

structure is analyzed for various dimensions and dielectric 
constants (various state variables). Combinations of state 
variables form the input patterns, corresponding computed 
parameters (impedances, scattering parameters, etc.) form 
the output targets. An input pattern and an output target 
give a training pattern together. All the training patterns 
form the training set. 

• Building neural network. We create a neural network con-
sisting of an estimated number of layers and of an estimated 
number of neurons in the layers (see Fig. 1). The number of 
neurons in the input layer is given by the number of state 
variables; the number of neurons in the output layer is de-
termined by the number of computed parameters. The num-
ber of hidden layers and hidden neurons has to be estima-
ted. Synaptic weights and biases are set randomly. 

• Training neural network. During the training, input patterns 
are successively introduced into the inputs of the neural 
network, and synaptic weights are changed to reach desired 
output responses. The training is finished when the network 
reacts properly to all input patterns from the training set. 
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• Verifying neural model. We introduce such patterns to the 

inputs of the neural model, which differ from the input pat-
terns of the training set. Exploiting the numerical model, 
correctness of the response of the network is verified. If the 
response is incorrect, additional training patterns have to be 
prepared, and training is repeated over a larger training set. 

• Using neural model. The trained neural network produces 
output responses with a sufficient accuracy both for training 
patterns and for interlaying input patterns. Therefore, the 
neural network can replace the numerical model. 
The trained neural network provides a special approxima-

tion in a fact: the exact results of the numerical analysis which 
are hidden in the training patterns are used for neural compu-
ting approximate results, which correspond to input parame-
ters differing from input patterns. That way, a computationally 
modest neural network can replace a numerical analysis for 
parameters differing from training patterns. 

In Section II, the described methodology is illustrated by 
developing a neural model of a planar stepped-impedance 
three-pole low-pass filter exploiting a feed-forward neural 
network and a recurrent one. Various algorithms are applied 
to reach an accurate training. The training procedures are dis-
cussed from the viewpoint of CPU-time demands and reached 
accuracies. 

In Section III, the finished neural models are associated 
with global optimization techniques to verify approximation 
abilities and evaluate computational demands of neural nets. 
The obtained results are confronted with the optimization ba-
sed on numeric modelling. 

Section IV concludes the paper. 

II. NEURAL MODELS OF A PLANAR FILTER 

A. Filter Description 

In order to examine different approaches to the neural mo-
delling of microwave structures, a simple planar filter is as-
sumed. We consider a stepped-impedance three-pole low-pass 
filter with Chebychev response (Fig. 2). The cut-off frequency 
is fc = 1 GHz, the pass-band ripple equals to 0.1 dB, and the 
source/load impedance is Z0 = 50 Ω. The filter is etched on the 
substrate with the dielectric constant εr = 10.8, and with the 
height h = 1.27 mm. 
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Fig. 2.  A stepped-impedance three-pole low-pass filter with 

Chebychev response. The width of the inductive segment wL, 
and the width of the capacitive segment wC are state variables 
of the filter. 

The width of the input/output microstrip line equals to w0 = 
= 1.1 mm to get the characteristic impedance Z0 = 50 Ω on the 
cut-off frequency. 

Initially, we set the dimensions of the reactive segments of 
the filter to the following values: 
• The length and the width of the inductive segments are lL = 

= 9.81 mm, and wL0 = 0.20 mm, respectively. 
• The length and the width of the capacitive segments are lC = 

= 7.11 mm, and wC0 = 4.00 mm, respectively. 
Around the point [wL0, wC0], we wish to approximate the 

dependence of the filter forward gain s21( wL, wC, f) for the 
fixed lengths of inductive segments lL = 9.81 mm and the ca-
pacitive one lC = 7.11 mm, changing the frequency from the 
cut-off one fc = 1.0 GHz to fmax = 5.0 GHz. First, the depen-
dence is approximated by a feed-forward neural network, and 
second, we try to repeat the modelling procedure exploiting 
a recurrent neural network [5], [7], [8]. 

B. Feed-Forward Neural Model 

Feed-forward neural networks are characteristic by a direct 
signal flow from the input layer to the output one without any 
feedback. Therefore, this type of networks simply statically 
maps input patterns to output targets. 
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Fig. 3.  a) Architecture of a feed-forward neural network for mo-
delling a stepped-impedance three-pole low-pass filter with 
Chebychev response. Input layer consists of input neurons 
(squares). Other layers contain adaptive non-linear neurons 
(circles). b) Structure of an adaptive non-linear neuron. 

The neural model is built to map the triplets [wL, wC, fn] to 
the filter forward gain on the frequencies fn, i.e. s21(fn). There-
fore, the neural network consists of three input neurons (distri-
buting nodes) and a single output one. 

The initial (coarse) training set containing 60 training pat-
terns consists of all the combinations of wL ∈ {0.10, 0.30, 
0.50} mm, wC ∈ {2.00, 4.00, 6.00, 8.00} mm, and f ∈ {1.0, 
2.0, 3.0, 4.0, 5.0} GHz, which are completed by the corres-
ponding values of the filter forward gain s21(wL, wC, f) compu-
ted by Zeland IE3D. 

Next, we have to estimate a proper number of hidden layers 
of the network, and a proper number of neurons in those la-
yers (i.e., we search for a proper size of the distributed memo-
ry to store information about the filter behaviour in the space 
[wL, wC, f] ). The number of hidden layers, and the number of 
neurons in them, is usually estimated by Bayesian regulari-
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zation [9]. In our case, the regularization proposes two hidden 
layers, which contain six neurons each, as the optimal network 
architecture. Using a larger network, an overtraining can ap-
pear (in between the training patterns, the neural approxima-
tion oscillate). 

An initial training of the network is performed by applying 
the particle swarm optimization [10] in order to reveal global 
minima of the error function of the neural network (the diffe-
rence between the actual network response, and the desired 
one – given by the training pattern). The training process is 
started with the following parameters: the number of particles 
is set to M = 50, absorbing walls are used on the boundaries of 
the training region, and the length of a single training process 
is limited by 150 iterations. The pre-training convergence for 
the initial feed-forward neural network is depicted in Fig. 4. 
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Fig. 4.  Particle swarm optimization pre-training convergence 
for the initial feed-forward neural network configuration. 

The global training moves the state vector of the neural 
network (synaptic weights and thresholds) in a vicinity of 
a global minimum of the error function. Using the particle 
swarm optimization for the global training, the neural model 
reaches the value of the mean squared error over all training 
patterns equal to e = 3.95 ⋅ 10-2, and the pre-training process 
takes t = 5.30 s of the CPU time when using the regular PC 
equipped by AMD Athlon 2700+, 512 MB RAM, Windows 
XP, and MATLAB 6.1. 
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Fig. 5.  Levenberg-Marquardt refinement training convergence 
for the initial feed-forward neural network configuration. 

In the following step, training of the neural model is refined 
applying Levenberg-Marquardt method [11]. I.e., a local opti-
mization method is used to move the state vector from the 
point in the vicinity of the global optimum to the global opti-
mum. Time response of the training error is shown in Fig. 5. 
After 68 iterations, the training error equals to e = 8.00 ⋅·10-7 
(the network refinement is stopped when the error drops be-
low the prescribed limit emax = 10-6). The refinement training 
consumes 2.06 s of the CPU time. 
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Fig. 6.  The maximum approximation error of the neural model 
for wL = 0.20 mm, and wC = 4.00 mm (the worst case) for the 
initial feed-forward neural network configuration. 

In order to evaluate the model accuracy, a set of testing pat-
terns is compiled. The testing set enriches the training one by 
the interlaying patterns in order to test the approximation abi-
lities of the neural model outside the training points also. The 
testing set contains 315 patterns. 

The worst case, when the model error reaches the highest 
values, appears for the width of the inductive segment wL = 
= 0.20 mm, and for the width of the capacitive segment wC = 
= 4.00 mm. In Fig. 6, the error is depicted as a frequency de-
pendent quantity. 
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Fig. 7.  Particle swarm optimization pre-training convergence 
for the refined feed-forward neural network configuration. 

Since the approximation error is unacceptably high (up to 
14 %), a refined model is going to be trained. Therefore, 
a new training set has to be prepared, which contains more 
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training patterns (441 compared to 60 in the initial training 
set). The width of inductive segments wL ∈ <0.05, 0.65> mm 
is sampled now with the step ∆wL = 0.10 mm (compared to 
∆wL = 0.20 mm in the initial training), and the width of capa-
citive segments wC ∈ <2.00, 8.00> mm is sampled now with 
the step ∆wC = 1.00 mm (compared to ∆wC = 2.00 mm in the 
initial training). The frequency f ∈ <1.0, 5.0> GHz is sampled 
with the step ∆f = 0.5 GHz (compared to ∆f = 1.0 GHz in the 
initial training). 

0 100 200 300 400
10

-6

10-5

10
-4

10-3

e [-]

iteration
 

Fig. 8.  Levenberg-Marquardt refinement training convergence 
for the refined feed-forward neural network configuration 

Applying Bayesian regularization, the optimal number of 
hidden neurons is estimated to ten in two hidden layers each. 

The pre-training error after 150 iterations is e = 3.14 ⋅·10-2 
with the CPU time consumption t = 19.1 s (Fig. 7). Training 
of the neural model is stopped when the training error drops 
bellow 10-6 after 509 iterations, which takes 54.5 s (Fig. 8). 

Error of the new neural model over the refined testing set 
reaches maximum values at wL = 0.02 mm and wC = 8.00 mm. 
The highest error is lower than 3 % (Fig. 9). 
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Fig. 9.  The maximum approximation error of the neural model 
for wL = 0.05 mm, and wC = 8.00 mm (the worst case) for the 
refined feed-forward neural network configuration. 

We can conclude that the refined neural model of the step-
ped-impedance three-pole low-pass filter can fully replace the 
numeric one – the maximum error below 3 % is comparable to 
the accuracy of numerical models and measurements. 

C. Recurrent Neural Model 

Recurrent neural networks are characteristic by feedbacks 
in their structure (see Fig. 10). Due to these feedbacks, the 
recurrent neural network is able to map an input sequence into 
an output one. In case of modelling a stepped-impedance 
three-pole low-pass filter with Chebychev response, doublets 
of widths wL and wC can play the role of input patterns, and 
a sequence of filter forward gains on prescribed frequencies 
s21 is a target sequence. 
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Fig. 10. a) Architecture of a recurrent neural network for model-

ling a stepped-impedance three-pole low-pass filter with Che-
bychev response. The input layer consists of input neurons 
(squares). In a hidden layer, adaptive non-linear feedback 
neurons are used (hatched circles). The output layer consists 
of usual adaptive non-linear neurons. b) Structure of an adap-
tive non-linear feedback neuron (D denotes a delay block). 

Structure of the recurrent model of the filter is depicted in 
Fig. 10. The input layer consists of two neurons (the input for 
frequency was removed); the output layer is identical with the 
output of the feed-forward neural network. Dealing with hid-
den layers, recurrent networks contain a single hidden layer of 
feedback neurons. 
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Fig. 11.  Particle swarm optimization pre-training convergence 
for the initial recurrent neural network configuration. 

The neural model reacts on an input doublet recurrently, 
and provides a sequence of values of the filter forward gain s21 
(a series of forward gains on the frequencies of interest). This 
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is the most important difference between the feed-forward 
neural model and the recurrent one. Otherwise, the methodo-
logy of building a recurrent neural model of the filter stays 
unchanged: 
1. A coarse training set for the initial training of the recurrent 

network is similar compared to the training set used for 
training the feed-forward model. We only complete the 
input patterns by zeros in time to obtain input sequences, 
and we divide a single training iteration to several periods. 
In a period, the network is trained using 5 training patterns 
(5 frequencies) corresponding to a single doublet [wL, wC]. 
In this sense, we can consider the training set consisting of 
60 patterns (identical with the coarse training set of the 
feed-forward neural network). 

2. Respecting the size of the training set, the number of hid-
den neurons in the recurrent layer has to be estimated in 
order to prepare large enough distributed memory for sa-
ving the information. Applying Bayesian regularization, six 
neurons in the recurrent layer seems to be optimal. 

3. In order to move the state vector of the network towards 
the global minimum of the error function, the particle 
swarm pre-training is applied using the same parameters 
like in case of the feed-forward neural model. After pre-
training, the mean squared error reaches the value e = 0.030 
in 68.90 seconds. The time course of the pre-training pro-
cess is depicted in Fig. 11. 

4. When the state vector of the neural network is in the vicini-
ty of the global minimum of the error function, Levenberg-
Marquardt algorithm is applied to move the state vector to 
the global minimum. 
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Fig. 12.  Levenberg-Marquardt refinement training convergence 
for the initial recurrent neural network configuration. 

Unfortunately, in case of the recurrent neural model, Le-
venberg-Marquardt algorithm was not able to reach the pre-
scribed level of the error function epr = 10-6, and stopped after 
1200 iterations on the level e = 2.30 ⋅ 10-3. The time passed 
was t = 26.09 s. Time response of the error during training is 
depicted in Fig. 12. 

The percentage error of the recurrent neural model over the 
testing set reaches the maximum value about 48 % for the 
worst case wL = 0.50 mm and wC = 6.00 mm (see Fig. 13). 

Considering the feed-forward model trained over the initial, 
coarse training set, the maximum approximation error was 

more than three-times lower (14 %), pre-training consumed 
less than 10 % of the pre-training time of the recurrent model 
(5.30 s versus 68.90 s), and also the refinement consumed less 
than 10 % of the refinement time of the recurrent model (2.06 
seconds versus 26.09 ones). 

Now, we are going to investigate whether abilities of the 
recurrent network can be improved using a denser training set. 
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Fig. 13.  The maximum approximation error of the neural model 
for wL = 0.50 mm, and wC = 6.00 mm (the worst case) for the 
initial recurrent neural network configuration. 

A denser training set was identical with the set for training 
the feed-forward model: 441 combinations of the widths of 
inductive segments wL ∈ <0.05, 0.65> mm sampled with the 
step ∆wL = 0.10 mm, and the widths of capacitive segments 
wC ∈ <2.00, 8.00> mm sampled with the step ∆wC = 1.00 mm. 
The frequency f ∈ <1.0, 5.0> GHz was sampled with the step 
∆f = 0.5 GHz (compared to ∆f = 1.0 GHz in the initial training 
set). 
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Fig. 14.  Particle swarm optimization pre-training convergence 
for the refined recurrent neural network configuration. 

A larger neural network contains 11 hidden neurons in 
a single layer. The model pre-training error after t = 465 s 
equals to e = 3.84 ⋅ 10-2 (Fig. 14). The training process is stop-
ped after 1200 iterations (t = 272.0 s) without satisfactory re-
sults. The training error is e = 1.59 ⋅ 10-2 (Fig. 15). 

The error of the refined recurrent model over the enriched 
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testing set is still high, especially for wL = 0.05 mm and wC = 
= 5.50 mm. The highest value of the percentage error reaches 
up to 55 % at the frequency f = 5.0 GHz (see Fig. 16). 
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Fig. 15.  Levenberg-Marquardt refinement training convergence 
for the refined recurrent neural network configuration. 

Obviously, the enrichment of the training set caused further 
degradation of the recurrent neural model of the filter. 
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Fig. 16.  The maximum approximation error of the neural model 
for wL = 0.05 mm, and wC = 8.00 mm (the worst case) for the 
refined recurrent neural network configuration. 

We can therefore conclude that recurrent neural networks 
are not suitable for modelling electromagnetic structures in 
a relatively narrow band of frequencies. 

III. OPTIMIZATION 

In Section II, we discussed CPU-time demands of building 
neural models of microwave structures. Now, we are interes-
ted in CPU-time demands of the neural nets in the role of 
a model. The neural network is therefore associated with an 
optimization routine, and is used for the design of a filter. 

The optimization is asked to find an inductive segment 
width wL and a capacitive segment width wC so that the filter 
can meet target values of the forward gain at f1 = 1 GHz: 
s21(f1) = –0.1 dB, at f2 = 2 GHz: s21(f2) = –10 dB, and at f3 = 
= 3 GHz: s21(f3) = –15 dB. 

The objective function is minimized by particle swarm met-
hod with M = 30 particles and absorbing walls on the bounda-
ries. Due to the random initial values of the inductive segment 
width wL and the capacitive segment width wC, each training 
process is run five times, and the learning error is averaged. 
Therefore, the length of optimization is fixed (80 iterations). 

The convergence of optimization exploiting the feed-for-
ward neural model of the planar filter is depicted in Fig. 17. 
There are three curves in the figure: the time course of criteria 
function of the best run of the optimization process (dotted 
line), the worst run (dashed line), and the average run (solid 
line). The best, the worst and the averaged cases are sorted 
according to the criteria function value after the last iteration. 

After 80 iterations, the value of the criteria function stays 
constant on the level e = 2.5 ⋅ 10-3. This corresponds with the 
inductive segment width wL = 0.10 mm and the capacitive 
segment one wC = 3.91 mm. The optimal widths of segments 
are found in 0.062 s of the CPU time. 

The optimization was asked to yield the filter forward gains 
s21 = {–0.1, –10.0, –15.0} dB on frequencies f = {1.0, 2.0, 
3.0} GHz. Analyzing the optimized filter values of the s21 pa-
rameter, the reached values of the filter forward gain are s21 = 
= {–0.57, –9.67, –13.63} dB on respective frequencies. 
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Fig. 17. Convergence of the particle swarm optimization of the 

low-pass planar filter exploiting feed-forward refined neural 
model. 

In order to verify the neural design, we use Zeland IE3D in 
order to perform the full-wave analysis of the original filter 
(wL =0.20 mm, wC = 4.00 mm), and the optimized one (wL = 
= 0.10 mm, wC = 3.91 mm). 

The obtained filter characteristics are depicted in Fig. 18. 
Obviously, the neural design provides quite good results. 

Due to the unsuccessful training of the recurrent model, the 
optimization based on that model will provide wrong results: 
we therefore do not use this model in conjunction with the 
particle swarm optimization. 

In order to demonstrate the strength of the neural design, 
we repeat the whole optimization using Zeland IE3D to eva-
luate the criteria function in each iteration step of the optimi-
zation. The convergence of the full-wave design is depicted in 
Fig. 19, and the obtained optimal widths are wL = 0.10 mm, 
wC = 3.94 mm, compared to initial ones wL =0.20 mm, wC = 
4.00 mm, and neural ones wL =0.10 mm, wC = 3.91 mm. 
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a) 

 

b) 

 
Fig. 18.  Frequency response of the reflection coefficient at the 

filter input s11, and the filter forward gain s21. a) The original 
filter. b) The optimized filter (particle swarm optimization 
plus the refined feed-forward neural model). Computed by 
Zeland IE3D. 

After 80 iterations, the value of the criteria function stays 
constant on the level e = 1.6 ⋅ 10-3. In case of the full-wave 
optimization, the CPU time consumptions were t = 5 597 s. 
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Fig. 19.  Convergence of the particle swarm optimization of the 

low-pass planar filter exploiting full-wave numeric model 
(Zeland IE3D). 

The optimization was asked to yield the filter forward gains 
s21 = {–0.1, –10.0, –15.0} dB on frequencies f = {1.0, 2.0, 
3.0} GHz. Analyzing the optimized filter values of the s21 pa-
rameter, the reached values of the filter forward gain are s21 = 

= {–0.33, –9.81, –13.163} dB on respective frequencies. Ob-
viously, the numeric result is quite close to the neural one. 

We can therefore conclude that the refined feed-forward 
neural model of the filter can successfully replace the full-
wave numeric model of the filter in the global optimization 
procedure. 

Whereas the neural design consumed 0.062 s of the CPU 
time during the global optimization, the full-wave design re-
quired 5 597 s for the same purpose. 

IV. CONCLUSIONS 

Comparing the results, the feed-forward neural model 
trained by the particle swarm method and Levenberg-Mar-
quardt algorithm is the fastest and sufficiently accurate ap-
proach to model a low-pass planar filter specified above. 
Using the neural model in the global optimization procedure, 
the CPU-time consumed by the numerical model of the filter 
is more than 90 thousand times demanding compared to the 
neural one. 

Note that training and optimisation methods were imple-
mented in MATLAB 6.1 on a regular PC equipped by the 
processor Athlon XP 2700+, by 512 MB of RAM, and run 
under Windows XP. 

The recurrent model was not able to be trained with the 
sufficient accuracy. We therefore concluded that such a type 
of neural networks is not suitable for this kind of modelling 
tasks. 

TABLE I 
OPTIMIZATION RESULTS 

original feed-forw. IE3D
wL [mm] 0.20 0.10 0.10
wC [mm] 0.40 3.91 3.95
training - 73.6 -

otimizing - 0.062 5597 target
1 GHz s 21 [dB] -0.23 -0.32 -0.33 -0.10
2 GHz s 21 [dB] -7.47 -9.71 -9.83 -10.00
3 GHz s 21 [dB] -10.51 -13.12 -13.17 -15.00

optimized 
variables

time [s]
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