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Power Amplifier Behavioral Modeling Strategies Using 
Neural Network and Memory Polynomial Models 

E. R. Srinidhi, A. Ahmed, G. Kompa 

 
Abstract — This paper discusses the performance comparison 

of an artificial neural network (ANN) model and a memory 
polynomial (MP) model for modeling the dynamic nonlinear 
input-output characteristics of power amplifier (PA) with 
memory. The ANN model was based on time delay neural 
network (TDNN) and the memory polynomial model was 
developed using analytical polynomial function. Both models 
were developed to fit the dynamic AM-AM and AM-PM 
conversions of the PA obtained from QPSK digital modulated 
signal. Furthermore, the conventional TDNN model topology was 
extended by introducing an additional input to take into account 
the frequency tone spacing (for two-tone excitation condition) of 
the stimulus signal, to incorporate memory-effect behavior. The 
comparison results show that the two variants of PA models are 
applicable to model the PA, however, the TDNN model, 
compared to the memory polynomial model, can give better 
modeling results.  

Keywords – TDNN, memory polynomial, PA behavioral 
modeling, memory effects. 
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Fig. 1. AM-AM and AM-PM characteristics of the PA used in 
simulation for single tone input at 850 MHz. 
          

I. INTRODUCTION 
 
In recent years, the development of cellular market has 

world-wide initiated researchers to investigate the 
implications of power amplifiers (PAs) in the 
telecommunication system. With the increasing importance of 
spectral efficiency, an RF PA, used in third generation (3G) 
mobile communication, needs to be highly linear to meet 
stringent spectrum emission requirements of 3GPP standards. 
In this regard, PA modeling is the most important step in the 
design of communication systems wherein non-constant 
envelope digital modulation techniques are adopted. System-
level amplifier behavioural modeling allows the design and 
simulation of more complicated structures like transmitter 
and/or linearizer with different complex modulated signal. 
The first step in designing or developing any linearization 
techniques is to precisely characterize and model the 
nonlinearity of the amplifier [1], [3-11]. Behavioral modelling 
is often used for modelling PA nonlinearity because it 
provides an efficient means to compute input-output nonlinear 
relation without the need of physical analysis of the device or 
system.  
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Amplifying an input signal to levels required for reliable 
transmission using currently available PA introduces 
amplitude and phase distortion. In narrowband applications, 
such as global system for mobile communication (GSM), the 
nonlinearity of the PAs is usually expressed by amplitude 

modulation to amplitude modulation (AM-AM conversion) 
and amplitude modulation to phase modulation (AM-PM 
conversion) characteristics as shown in Fig. 1. In this case, 
AM-AM and AM-PM conversions are only function of the 
input signal level and independent of its envelope frequency 
(see Fig. 1). A PA having such characteristics is called quasi-
memoryless PA where it is assumed that the output of the PA 
is only function of the instantaneous input signal. The 
characteristics of such a PA will cause symmetrical IMD in 
the output spectrum when the input signal of the PA is multi-
tone [4]. Similarly, we get a symmetrical spectral regrowth in 
the output spectrum when input to the PA is a digitally 
modulated signal. Conventional PA models, such as Saleh 
model and polynomial [5], can be used in modeling such 
behavior.  

However, for a nonlinear system with memory, the output 
of the PA is not only a function of its instantaneous input but 
also its past inputs. Consequently, the corresponding single-
tone AM-AM and AM-PM characteristic response does not 
give sufficient information about the system nonlinearity. 
Thus an accurate characterization and modelling techniques 
are essential to precisely describe the system nonlinearity. 

The use of Volterra series representation is one 
recommended method to model such dynamic systems with 
memory [6]. But the computation of Volterra kernels is often 
difficult when the system has complex nonlinearity. Thus it is 
necessary to implement a simpler model for most complex PA 
modelling applications.  

Analytical equations, such as memory polynomial, which 
will be discussed in section II, was analysed in a detailed 
manner in [7] to model PAs with memory, however, it is 
difficult to compute and optimize the fitting parameters of the 
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Fig. 2. Two-Tone upper- and lower-IMD3 response as 
function of input power and frequency spacing (∆f ) at 850 
MHz center frequency. 
 

analytical functions for dynamic (envelope frequency 
dependent) input-output measured data. Additionally, the 
complexity of the model increases with increasing memory 
and nonlinearity order. In this case, a large number of 
coefficients should be extracted for better approximation. 

Furthermore, some authors [8] have published papers on 
Wiener model, a two-box model approach used for PA 
modeling with memory, which is a cascade connection of 
linear time invariant (LTI) system and memoryless nonlinear 
system. However, this approach is applicable for modeling 
AM-AM and AM-PM nonlinearities for a particular 
modulation frequency of the excitation signal. 

In modern wideband applications involving wideband code 
division multiple access (WCDMA) stimulus signals, which 
are highly sensitive to nonlinearities, PA memory effects 
cannot be neglected. In simple terms, memory effects are 
defined as the variation in the amplitude and phase of 
distortion components caused by changes in modulation 
frequency of the input signal. These effects distort the 
symmetry in the output spectrum of the amplifier and hence 
make the PA linearization methods less effective [1], [4].  

In general, memory effects depend on signal envelope 
frequency ranging from 10 kHz to several MHz and can be 
defined as dynamic behaviour of the output signal as function 

of the envelope frequency. As discussed in [3], the main 
causes of memory effect in high power amplifiers (HPAs) are: 

 
- Electro-thermal memory effects: caused at low 

modulation frequencies due to self-heating and surface 
trap induced dispersion effects [9] of transconductance 
and channel conductance of the active device. 

- Electrical memory effects: caused by varying envelope, 
fundamental or second harmonic impedances, arising 
from matching network and/or bias circuits, at different 
modulation frequencies.  

 
Fig. 2 shows how the 3rd-order intermodulation distortion 

(IMD3) is a function of power and frequency spacing between 
two tones of the input signal where the frequency swept from 
0.01-20 MHz tone spacing. Furthermore, this figure presents 
the asymmetry between lower and upper IMD. This non-
constant distortion behavior is related to the memory effect in 
PA as discussed in [1], [8] and [10]. The difficulties involved 
in modeling nonlinear amplifier with memory effects originate 
not only from the nonlinearity as function of the input power 
level such as AM-AM and AM-PM, but also from the 
nonlinearity as function of the envelope frequency. In this 
case, Wiener model, for instance, cannot model envelope 
frequency dependent dynamic characteristics. As a result, a 
more comprehensive modeling approach based on parallel 
Wiener model (see Fig. 3) should be developed which is 
discussed in detail by H. Ku et al [8].                          

Another reliable technique in order to overcome these 
limitations would be to develop a new PA modeling approach 
using artificial neural network (ANN) [7], [10-15]. ANN 
model, which has the ability to learn by example, makes them 
very flexible, powerful and reliable for nonlinearity and 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. PA model for a system with memory using parallel Wiener 
model [8]. 
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Fig. 4. Memory polynomial power amplifier model. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. TDNN for power amplifier model. 

memory effects modeling of the PA. Furthermore, it has the 
capability to learn a complex nonlinear behavior of a dynamic 
system without the need to understand the internal 
mechanisms of the system. Consequently, ANN can be an 
alternative and attractive approach for PA modeling with 
memory effects. 

Section II and III of this paper describe memory polynomial 
(MP) model and time delay neural network (TDNN) model 
for modeling the PA including memory effects, section IV 
summarizes the modeling results and section V gives a 
conclusion. 

II. DESCRIPTION OF MEMORY POLYNOMIAL 
MODEL 

 
Polynomial function is one of the most frequently used 

method for PA modeling because regenerated spectral 
components can be calculated analytically based on the 
polynomial coefficients. Nowadays, baseband memory 
polynomial model is widely used to describe nonlinear effects 
in a PA, which exhibit memory effects [3], [7]. 

input output

Linear time 
invariant memoryless system

system (LTI)

FIR
filter

MLP
Neural Network

Non-linear

MLPV  (n)in

V  (n-1)in

V  (n-q)in

V  (n-Q)in

Z -1

Z -1

Z -1

V  (n-2)in
Z-1

V    (n)out

input         hidden     output
layer           layer       layer

The general form of a MP behavioral model with a unity 
delay tap denoted by Z-1, which is used to fit the discrete 
complex measured data of the PA, can be written as 
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   where qka~  are complex MP coefficients, which can be 

estimated by a simple least-squares method and  is 
the memory interval which is equal to the sampling interval.    and V  are measured complex n

Qq ,,1,0 L=

)(nVin )(nout
th sample of input 

and output signals. Q and K are the maximum memory- and 
polynomial-order respectively. This equation can be 
represented by a block diagram shown in Fig. 4 and can also 
be rewritten in a compact form if we let  
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In this model the output signal is dependent on the 

instantaneous and previous input signal, which allows 
modeling the memory in the system. 

III. DESCRIPTION OF TDNN MODEL 
 
ANN can be viewed as a model capable of mapping inputs 

to outputs by learning (by optimization) the behavior of a 
system from a given environment. These NNs operate by 
adjusting their weights iteratively after knowing the error 
between the actual and the desired output. NNs have drawn 
the attention of several RF and microwave CAD design 

researchers due to its immense potential of modeling complex 
nonlinear dynamic systems. 

 
A. Conventional TDNN Topology 

 
The topology of a three-layered feedforward TDNN model 

with time delay taps is depicted in Fig. 5, which is commonly 
used for representing nonlinear PA model with memory. In 
general, these feedforward NNs implement back propagation 
(BP) algorithm to approximate the nonlinear relationship 
between the input and the output signal of PA [11]. The 
TDNN PA model is analogous to the classical Wiener model, 
which can be viewed as a cascade of FIR filter (LTI system) 
and an MLP (nonlinear memoryless system) block. The 
topology of the conventional TDNN model was realized in 
MATLAB. 

 However, this conventional TDNN model can only be 
implemented, for instance, for a multi-tone excitation signal 
or realistic telecommunication digital modulated signal, in 
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general, which has a fixed envelope bandwidth frequency. In 
other words, it models the dynamic AM-AM and AM-PM 
characteristics for a particular input baseband envelope 
frequency. For example, let us assume that a TDNN PA 
model is developed for a two-tone stimulus signal having ∆f1 
tone spacing. Now, if the tone spacing of the input signal 
envelope is varied to ∆f2, and then tested for the same PA 
model, the TDNN will give incorrect result, in which case, the 
response of the PA model will be different from the desired 
output. This is because the TDNN model is trained for a 
specific tone spacing of the input two-tone stimulus. This, in 
turn signifies that, the model cannot predict memory effects 
using conventional TDNN topology. 

Therefore, the TDNN model should be suitably modified to 
predict memory effect phenomenon in case of dynamic 
stimulus signals with varying envelope frequencies. 
Accordingly, a new improved TDNN model is proposed as  
shown in Fig. 6, which incorporates an additional input ∆  
for defining the tone spacing of the signal envelope. 

f~

 
 
 

  
 
 

 
 
 
 
 
 
      ~ 
 
 
 
 
 
 
Fig. 6. Proposed TDNN topology used for PA modeling for 
precise prediction of memory-effects. 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7.  Schematic representation of the proposed complex-
valued TDNN model where two separate TDNNs are trained for 
AM-AM and AM-PM characteristics, respectively. 
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B. Improved TDNN Topology Exhibiting PA Memory-Effects 
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In case of the improved TDNN model, the additional input 

vector, which signifies the tone spacing of the stimulus signal, 
is calculated by scaling the corresponding tone spacing 
frequency in the range of {-1,1}. This computation procedure 
is discussed in detail in section IV. 

In commonly used ANN models, the complex input-output 
data are processed separately either in the rectangular form 
(real and imaginary) or converted to polar form (magnitude 
and phase). Although the authors [12] have proposed 
complex-value based NNs, the training algorithm becomes 
very complicated because the activation functions, which are 
used in the NN, must also be complex. Therefore, two 
separate TDNNs are implemented, as illustrated in Fig. 7, to 
model the dynamic AM-AM and AM-PM nonlinear 
characteristics (Fig. 6). Levenberg-Marquardt BP algorithm 
was used for training these TDNN models. To develop such 
model, only measured complex input and output data are 
required without the need to understand the internal 
mechanisms of the PA. Consequently, such model has the 
capability to fit a complex nonlinear behavior in PAs . 
  

TDNN for
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input output
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IV. MODELING RESULTS OF THE DEVELOPED 
MODELS 

 
In this section, the modeling results of two variant PA 

models are discussed. Both models were realized in 
MATLAB. The developed memory polynomial PA model has 
a polynomial order of seven and a memory order of five. On 
the other hand, the developed TDNN model has 7-neurons at 
the input layer, 15-neurons in the hidden layer and one neuron 
at the output layer. The activation functions used for the input-
output layers and hidden layers are linear transfer function and 
hyperbolic tangent sigmoid activation function, which is a 
nonlinear function, respectively. 

 The measurement data, used for comparing modeling 
results, is extracted from ADS® designed class AB amplifier. 
This PA circuit model, which exhibits memory effects, uses a 
Motorola MOSFET.  

 

Concerning the procedure to calculate additional input 
vector for the improved TDNN model, let 

 and  represent the minimum and maximum input vectors of 
simulated data and and  represent the minimum and 
maximum scaled vectors. Subsequently, the linear scaled 
result [13] is computed as  

minx
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~x max
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wherein for a given value of x , scaled vector  is obtained 
which is denoted as ∆  in Fig. 6. As an example, Table I 
shows the unscaled and scaled input vectors, which indicates 
the tone spacing of the two-tone stimulus signal, having 
boundary conditions { , } and 

x~

MHz

f~

minx x 200,max ≡
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Fig.  8.  Measured and modeled dynamic AM/AM (a) and AM/PM 
(b) characteristic for QPSK input signal. 
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For PA modeling including memory effects, more practical 
and application oriented stimulus signals, such as digital 
modulated signals with non-constant envelope, should be 
considered. Moreover, these signals have larger PAR 
compared to the two-tone signal and can extract more 
information about nonlinearity from broadband PA. For this 
reason, around 6000 samples of input and output measurement 
data was considered, obtained from QPSK input signal having 
12 dBm input power level, 850 MHz center frequency, 6 MHz 
bandwidth and roll-off factor of 0.35.  
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TABLE I 
MAPPING OF DIFFERENT FREQUENCY TONE SPACING ( f∆ ) TO 

THE SCALED INPUT VECTOR ( ∆ ) FOR THE IMPROVED TDNN 
PA MODEL 
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The dynamic AM-AM and AM-PM modeling results for 

both models are shown in Fig. 8. For the memory polynomial 
PA model, the maximum error between the measured and the 
modeled data was found equal to 10-2 and 10-5 for TDNN 
model trained for 100 iterations. Hence negligible difference 
is observed between measured and modeled data in Fig. 8. 
Furthermore, by increasing the order K of the polynomial in 
memory polynomial model and the number of iterations, in 
case of TDNN model, better results can be achieved. 
Nevertheless, it is important to note that usage of very high 
polynomial order might lead to computational instability 
caused by the matrix inversion in least square solution. To 
overcome this drawback, conventional polynomial can be 
replaced by orthogonal polynomial [14]. 

V. CONCLUSION 
 
In this paper, two variants of PA models, memory 

polynomial and TDNN, for PA modeling with memory effects 
have been described and compared. Both models can be used 
to model a nonlinear PA with memory. Further, a novel 
TDNN topology was proposed, wherein an additional input 
was added to the existing conventional model, which takes 
into account the tone spacing of the stimulus signal. The 
modeling results show that the TDNN model shows excellent 
agreement with the measured data compared to the memory 
polynomial model. This is due to the difficulty in fitting a 
dynamic behavior using analytical function, especially when 

the system memory becomes prominent and possess a 
complicated dynamic form. Furthermore, since TDNN model 
is more accurate and reliable, it seems to be an effective 
solution for amplifier modeling including memory effects. 
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