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Abstract – We extensively investigated the effects of the 

temperature on the DC behaviour, the small signal and the noise 
performance at microwave frequencies of pseudomorphic 
HEMTs. The measured data were then employed to extract 
temperature dependent models by means of several extraction 
techniques. The relevant experimental data show that the most 
important electrical parameters, such as the output current, the 
threshold voltage, the transconductance, the forward 
transmission coefficient and the noise figure, are sensibly 
affected by thermal phenomena. 

The knowledge of the small signal equivalent circuit of 
microwave GaAs FET’s is a crucial point for the design of low 
noise amplifiers and is a very useful tool to support the analysis 
of the transistor performance. In the present work, we report the 
results of our experimental activity concerning the 
characterization and the application of several improved 
procedures for the extraction of the model element values from 
DC, scattering (S-) parameter and noise figure measurements. 
The developed modeling procedures are: direct extraction, 
neural network techniques and evolutionary algorithm 
approach. The very good agreement between the simulated and 
measured parameters confirms the validity of the proposed 
methods. To carry out the experimental activity, we employed a 
properly designed cryogenic set-up operating in our laboratory 
that allows us to perform DC and microwave characterization 
down to 30 K. 

Keywords – Cryogenic measurement, Noise Parameters, S-
Parameters, Semiconductor device modeling. 

I. INTRODUCTION 

The Gallium Arsenide high electron mobility transistor 
(HEMT), either lattice matched or pseudomorphic (pHEMT), 
overcomes the performance limits of the metal semiconductor 
field effect transistor (MESFET) as it exhibits larger gain, 
higher operating frequency and lower noise figure. The 
carriers in the triangular (lattice matched) or square 
(pseudomorphic) quantum well flow in a pure crystal material 
and they are spatially separated from the donors by means of a 
spacer layer. This separation leads to a significant reduction of 
Coulomb scattering and carriers frozen at ionized donors 
under low temperature condition. Therefore the device 
performance improves at cryogenic temperatures as the 
electron mobility is enhanced by the decrease of phonon 
scattering processes [1, 2]. 

The investigation of the effects of temperature upon the 

performance of low-noise transistors is a key issue in 
designing microwave integrated circuits operating in a critical 
environment. In addition, knowledge of the microwave 
performance of high electron mobility transistors at cryogenic 
temperatures is of fundamental importance for the 
optimization of cooled radio astronomy low-noise receivers or 
nuclear instrumentation front-ends. 

The purpose of the present work is to report on the 
characterization and modeling of pseudomorphic high 
electron mobility transistors (pHEMT) down to 30 K.  

The following of this work is organized into six Sections: 
In section II we describe the device under test and the 

cryogenic set-up. The analyzed transistor is a commercial low 
noise pHEMT. The DC and RF characterization have been 
performed down to 30 K by a cryogenic set-up operating in 
our lab. A fully automated tool implemented in Agilent VEE 
language allows a fast, accurate and complete device 
characterization with a user friendly interface and software 
utilities for data post-processing. 

In Section III we analyze the experimental results. We 
believe that trapping mechanisms are responsible of the kink 
effect, the threshold voltage shift, the reduction of the 
transconductance and the magnitude of S21 and the 
experimental data support our hypothesis quite reasonably. 

In Section IV we describe the direct extraction method. 
This procedure requires only a single S-parameter 
measurement performed on a strong pinched-off cold FET (a 
zero drain source voltage Vds and a gate source voltage VGS 
much lower than the pinch-off voltage VPO) to determine 
parasitic ECP’s [3-5]. This method does not require 
application of a forward bias to the gate as proposed in [6], 
thus avoiding device degradation due to a large gate current. 
The knowledge of the parasitic elements allows to extract the 
intrinsic elements after simple matrix manipulations to 
remove the parasitic effects from the scattering (S-) parameter 
measurement performed under “hot” bias condition (VDS > 0 
V, i.e. active device). 

In Section V we report on the development of two distinct 
ANN-based techniques for the modeling of microwave active 
devices. In particular, we selected a suitable neural structure 
and trained it adequately to obtain a global ANN that would 
allow us to perform a DC and RF modeling of the DUT. 

In Section VI we refer about the implementation of an 
Evolution Algorithm (EA) for the cryogenic noise modeling 
of microwave devices. 

II. DC AND MICROWAVE SET-UP  

As far as the cryogenic characterization is concerned, we 
examined a short-lead packaged pseudomorphic 
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(AlGaAs/InGaAs/GaAs) HEMT (Mitsubishi MGF4919G). 
The MGF4919 is a super low-noise transistor designed for use 
in L to Ku band amplifiers with a low noise figure and a high 
associated gain (less than 0.5 dB and higher than 12 dB, 
respectively, @ VDS = 2 V, ID = 10 mA and f = 12 GHz). 

S-parameters of the transistor have been measured up to 6 
GHz with a vector network analyser (Agilent Technologies, 
mod. 8753E). The devices have been placed within an air 
coaxial transistor test fixture (Maury Microwave, mod. 
MT950G) shown in Fig.1. The effects of the TTF on the 
measured data were properly modeled and the transistor data 
deembedded at the package reference planes.  

 
Fig. 1. Photograph of the transistor test fixture (Maury Microwave 
TTF mod. MT950G) mounted on the thermal chuck 

A full-two-port calibration of the Vector Network Analyzer 
(Agilent VNA mod. 8753E) is done to 7 mm references plane 
by using the Short-Open-Load-Thru (SOLT) method. In 
addition, we determine the element values of the circuit model 
for the TTF (see Fig. 2) [7] from S-parameter measurements 
of check devices (Maury Microwave mod. MT953G) at the 
working temperature condition by means of an optimization 
approach combined with an off-line calibration procedure.  

 
Fig.2. Circuit model of the TTF body and the insert transition region. 

This model takes into account the effects of the TTF body 
and the insert transition region, for deembedding data at the 
package reference planes by means of the following relation:  
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where TDUT, TDUT+TTF, TTTF_LEFT and TTTF_RIGHT represent the 
transmission matrices corresponding to the scattering matrices 

of the device under test, the device including the effects of the 
TTF, the left and right parts of the TTF, respectively. To 
illustrate the very strong phase shift of S-parameters 
introduced by the TTF we report the measured forward 
transmission coefficient S21 with and without deembedding 
(see Fig. 3). In the same plot we reported also the behavior of 
S21 deembedded by using the TTF model determined at 290 K 
and it can be observed that neglecting the thermal dependence 
of the TTF leads to an increase of the phase shift at lower 
temperature. 
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Fig. 3. Behavior of S21 vs. frequency at 70 K deembedded by using 
the model of the TTF at 290 K (dashed line) and 70 K (thick line), 
and without any deembedding (thin line). The bias point is VDS = 
2.5 V and VGS = 0 V. 

The TTF is placed on a liquid-helium (closed cycle) cooled 
metallic finger inside a vacuum chamber having microwaves 
coaxial feedthroughs (0 – 40 GHz) for the external 
instrumentation. This cryogenic set-up was designed and 
custom-built to perform DC and microwave characterization 
of devices and circuits down to 30 K. The desired temperature 
condition is obtained by means of a PID control loop.  

The DC and RF measurements are fully automated by 
means of a home-made software implemented in Agilent VEE 
language. All operating conditions are settled and monitored 
by this software with an user friendly interface. The high level 
of automation allows to perform an accurate, fast and 
complete device characterization under several temperature 
conditions with high accuracy and great time saving. 

III. EXPERIMENTAL RESULTS 

A. DC characteristics 

In Fig.4 we report ID and gds vs. VDS of the pHEMT 
measured at room temperature. A kink effect is clearly visible 
and Vkink, i.e. the value of VDS at which ID shows a sudden rise, 
is approximately 1.5 V. We ruled out the occurrence of an 
impact ionisation process since the input characteristic IG - 
VGS did not show the typical “bell” shape at the kink bias 
conditions. Over the entire investigated bias range, the gate 
current exhibited fairly low values (tens of nanoamps) and a 
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monotonic smooth dependence on either VGS and  VDS . The 
trap model allows us to explain the origin of the soft 
breakdown in the device under test. 
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Fig. 4. Performances of ID and gds vs. VDS of the pHEMT measured at 
T = 295 K. VGS  is varied from 0 V to –0.4 V by step –0.1 V. 

 
By increasing VDS, hot electrons of the two dimensional 

electron gas (2-DEG) gain enough kinetic energy from the 
accelerating electric field in the channel to surmount the 
AlGaAs/InGaAs energy barrier and get then captured by 
donor related deep traps. As VDS is increased enough, 
approximately to Vkink, the carriers trapped in the high field 
gate-to-drain region are released. The decrease of negative 
charge lowers the potential barrier, which controls the number 
of carriers crossing the channel, and consequently leads to a 
sudden rise in ID. The size of the kink effect increases at 
higher VGS  (less negative) as the gate to drain potential barrier 
is lowered and thus the trapping and subsequent detrapping 
mechanisms are enhanced.  

In Fig. 5 we show gkink, i.e. the values of gds (Vkink), as a 
function of the temperature (from 295 K to 30 K). By cooling 
the device down to 150 K, the value of gkink increases and this 
behavior can be explained by analyzing the output 
characteristics reported in Fig. 6.  
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Fig.5. Performances of gds (Vkink) as a function of the temperature 
(from 295 K down to 30 K). 
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Fig.6. Performances of ID and gds vs. VDS of the pHEMT measured at 
VGS = 0 V under three different temperature conditions (295 K, 210 
K and 150 K). 

 
It is clearly visible a reduction of ID and an enhancement of 

the kink effect when the temperature decreases. As the 
velocity of the carriers in the undoped channel increases, due 
to a decrease of the phonon scattering processes, then the 
reduction in ID must be caused by a decrease of the 2-DEG 
concentration. By lowering the temperature, only a little part 
of traps release carriers by thermal emission process and 
therefore the number of electrons in the channel decreases and 
the negatively charged traps further reduce the current in the 
channel. When VDS becomes equal to Vkink, the filled traps 
release their electrons and thus the size of the kink effect 
increases at lower temperatures. By cooling the device from 
120 K down to 30 K, ID does not exhibit any I-V collapse 
phenomenon as shown in Fig. 7 [8, 10]. 

In this range of temperature, the trapping mechanisms no 
longer have a stronger impact on ID than the saturation 
velocity enhancement. The absence of the collapse 
phenomenon in our device can be attributed to a reduced trap 
concentration in the AlGaAs layer, likely due to a lower Al 
mole fraction, and a better electrons confinement in the 
InGaAs channel.  

In Fig. 8 we report ID as a function of VDS and temperature 
at VGS = –0.3 V. By decreasing the temperature, ID 
monotonically decreases because the threshold voltage shifts 
towards higher values. We believe that this threshold voltage 
shift is due to a decrease of the thermally activated electron 
detrapping mechanisms and the subsequent reduction of the 
net positive charge within the donor layer. 

We extracted the threshold voltage (VTH) of the device 
biased in the saturation region by finding the VGS axis 
intercept of the tangent to the 5.0

DI  (VGS) curve at its 
maximum slope point. Then the VTH may be expressed as: 

( )
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where 
MAXGS

D

dV
dI








 5.0

and VGSMAX are the maximum slope of 

5.0
DI  (VGS) curve and the corresponding VGS. 
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Fig. 7. Performances of ID and gds vs. VDS of the pHEMT measured at 
VGS = 0 V under three different temperature conditions (120 K, 70 K 
and 30 K). 

 

 
Fig.8. Performances of ID vs. VDS and temperature of the pHEMT 
measured at VGS = -0.3 V. 
 

At VDS = 2 V and T = 295 K, the values of VTH and ID (VTH) 
are, respectively, –0.431 V and 96.65 µA. By cooling the 
device down to 30 K, VTH increases and VGS (ID = 96.65 µA) 
becomes equal to –0.288 V.  

The shift of the threshold voltage leads to a degradation of 
gm, which is expected to improve when the temperature is 
lowered as the electron mobility increases in the undoped 
channel. In Fig. 9 we report gm vs. temperature and gate bias. 

 
Fig.9. Behavior of gm as a function of the temperature and gate bias 
at VDS = 2 V. 
 

By cooling the device, gm increases when VGS is far from 
the pinch-off while decreases when VGS is towards the pinch 
off. This behavior can be explained by linking the 
transconductance with both the transport properties 
improvement and the threshold voltage shift. Near the pinch 
off, the threshold voltage shift has a stronger impact on gm 
than the electron velocity enhancement. The influence of the 
threshold voltage shift on the gm can be compensated by the 
bias circuitry if the device is biased by imposing ID rather than 
VGS.  

B. RF characteristics 

It is well known that the kink effect is a low frequency 
phenomenon since it does not occur at high frequencies [11, 
12]. We calculated gdsRF at low frequencies from S22 
measurements as follows:  

 

{ }
{ } 022

22 1
Re1
Re1

ZS
SgdsRF ⋅

+
−

=    (3) 

 
The value of gdsRF decreases when the real part of the output 

reflection coefficient increases as the derivative of gdsRF with 
respect to Re {S22} is negative: 
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In the device under test the real part of S22 increases 

monotonically with the increasing of VDS. The real part of S22 
and, consequently, gdsRF exhibits no dispersion in the analyzed 
frequency range (100 KHz - 50 MHz). We evaluated the high 
frequency output characteristics by integrating the gdsRF with 
respect to VDS. The comparison between IDDC, gdsDC and IDRF, 
gdsRF is shown in Fig. 10. 

The calculated values of IDRF are higher than the measured 
values of IDDC and there is not any sudden rise in the values of 
IDRF. This behavior, which can be explained satisfactorily by 
the trap model, confirms that the kink effect observed in our 
device is due to trapping and subsequent field assisted carrier 
detrapping mechanisms. It is well known that trapping and 
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detrapping mechanisms are non equilibrium processes and the 
time constants of the traps are very long with respect to the 
reciprocal of microwave frequencies. Therefore the trapping 
mechanisms are low frequency physical phenomena as at high 
frequencies the traps cannot follow the applied signal. When 
VDS is raised enough to allow electrons of the 2DEG to 
overcome the potential barrier at the AlGaAs/InGaAs 
heterointerface, IDDC begin to be smaller than IDRF. As VDS 
becomes equal to Vkink, field assisted carrier detrapping 
phenomena at the drain side of the gate cause the kink effect. 
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Fig. 10. Comparison between IDDC, gdsDC and IDRF, gdsRF as functions 
of VDS of the pHEMT measured at VGS = 0 V and T = 295 K. VDS is 
varied from 0 V to 2.5 V by step 50 mV. 

 
Although the time constants of the traps are very long, the 

trapping mechanisms can affect RF performances as they 
influences the DC quiescent bias point. By lowering the 
temperature, the reduction of the net positive charge under the 
gate due to the reduction of the detrapping mechanisms, 
causes a shift of the bias point resulting in a degradation of the 
RF performance.  

The shift of the threshold voltage results turns into a 
decrease of ‌S21 ‌  and, consequently, in a degradation of the high 
frequency figures of merit, i.e. the current gain (h21) and the 
power gain (MSG and MAG), causing a reduction of the cut 
off frequency (ft) and the maximum oscillation frequency 
(fmax).  

The behavior of ‌S21‌ as a function of the frequency and the 
gate bias at two different temperature conditions (290 K and 
30 K) is reported in Fig. 11.  

By lowering the temperature, the magnitude of S21 increases 
when VGS is far from the pinch-off while decreases when VGS 
is near the pinch off. This behavior was expected as the 
forward transmission parameter is strictly linked with the 
transconductance (see Fig. 9). The forward transmission 
parameter is the small signal RF gain of the transistor with its 
input and output matched and at low frequencies it can be 
defined as follows: 
 

( )021 //2 ZRgS dsmRF−=   (5) 

 
RF degradation related to trapping mechanisms can be 

avoided if the RF small signal is applied to the transistor 
under pulsed bias condition [13]. 

 
Fig. 11. Magnitude of S21 as a function of frequency and gate bias at 
the temperature of 295 K (white plot) and 30 K (gray plot) for a fixed 
drain bias of 2 V. 

IV. DIRECT EXTRACTION PROCEDURE 
 

As far as the equivalent circuit is concerned, it is of basic 
importance to choose the most appropriate model topology for 
the specific case considered as the values of the extracted 
ECP’s depend on the model topology. In Fig. 12, we show the 
small signal equivalent circuit adopted for the tested device. 
The equivalent circuit is commonly partitioned into an 
extrinsic section, basically including bias-independent 
elements, and an intrinsic section with bias-dependent 
elements. The extrinsic elements are Lg, Ls, Ld and Rg, Rs, Rd 
which represent the gate, source, drain inductances and the 
gate, source, drain resistances, respectively. The intrinsic 
elements are the gate source capacitance Cgs, the gate source 
resistance Rgs, the transconductance gm, the transit time delay 
τ, the gate drain capacitance Cgd, the output conductance gds 
and the drain source capacitance Cds.  

We neglected the effect of parasitic capacitances because 
we employed measurements performed up to 6 GHz, whereas 
these elements should be included in the equivalent circuit 
when working at higher frequencies. If the influence of the 
parasitic capacitances is neglected improperly, then the 
intrinsic capacitances will be overestimated as they will 
encompass the parasitic capacitance effects.  

The extraction of ECP values by means of S-parameter 
measurements is an ill-conditioned problem as there are too 
many unknowns and not enough equations (eight equations 
representing the S-parameters expressed in terms of the ECP’s 
at a fixed frequency). In the scientific literature several 
methods have been proposed [3, 14] to solve this problem and 
they can be classified into two categories: optimization-based 
[15] and direct (or analytical) extraction techniques [3-6]. 
However, it is well known that the optimization procedures 
may lead to element values with no physical meaning and the 
results depend either on the starting parameter values and the 
optimization method itself. The analytical procedures 
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overcome these drawbacks and allow to extract the ECP’s 
straightforwardly. 
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Fig.12. Equivalent circuit adopted for the device under test. The 
intrinsic elements are shown in the dashed box. 

 

By these direct methods, the parasitic ECP’s are extracted 
from S-parameter measurements performed at “cold” bias 
(VDS = 0 V, i.e. passive device). Under this bias condition 
there are not electrons flowing from source to drain and 
therefore gm is equal to zero. Two equations vanish (S12 = S21) 
as the transistor becomes reciprocal but, at the same time, the 
two unknowns gm and τ disappear [16]. Moreover, the gate-
source and gate-drain intrinsic circuits can be assumed equal. 
Although the validity of this approximation depends on the 
transistor lay-out structure, it is conventionally assumed that 
the intrinsic device structure is highly symmetric due to the 
symmetry of the depletion region under the gate at VDS = 0 V. 
Therefore, the relevant circuit analysis becomes much easier 
under “cold” condition since the intrinsic circuit can be 
simplified. The several “cold” methods reported in the 
literature differ for the value of VGS employed. We adopt a 
procedure which requires only a single S-parameter 
measurement performed on a strong pinched-off cold FET 
(VDS = 0 V, VGS << VPO) to derive parasitic ECP’s. The 
knowledge of the parasitic elements allows extracting the 
intrinsic elements after simple matrix manipulations required 
to remove the parasitic effects from the S-parameter 
measurements performed under “hot” bias condition 
(VDS > 0 V, i.e. active device).  

At strong pinch-off bias, the channel is completely depleted 
and therefore the capacitances Cgs, Cgd and Cds become the 
dominant intrinsic circuit elements (see Fig. 12). In order to 
simplify the circuit analysis the capacitive ∏ network is 
transformed into the corresponding T network consisting of 
the capacitances Cg, Cs and Cd [15]: 
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gdgs
gdgsg C

CC
CCC ++=   (6) 

gd

dsgs
dsgss C

CC
CCC ++=    (7) 

gs

gdds
gddsd C

CC
CCC ++=   (8) 

It can be noted that we do not need to assume that the gate-
source and gate-drain intrinsic circuits are equal, which would 
imply Cgs = Cgd. 

Then, the Z-parameters of the strong pinched-off device are 
[3-5]: 
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The parasitic inductances are extracted from the slopes of 

straight lines interpolating the experimental data of the 
imaginary parts of the Z-parameters multiplied by the angular 
frequency ω, vs. ω2. These lines are defined by a least square 
regression. The parasitic resistances are obtained by averaging 
the real parts of Z-parameters. The S-parameters measured 
under “hot” condition are converted to Z-parameters and the 
six extrinsic elements are subtracted [3]. The resulting Z-
parameters are then converted into Y-parameter since the 
intrinsic circuit is based on a ∏ topology. Finally, the seven 
intrinsic elements are computed by averaging the values 
analytically extracted at each frequency point from intrinsic Y-
parameters according to the expression proposed in [14]. 

The method employed is very fast as it needs only two S-
parameter measurements and moreover the characterization 
and modeling procedures are completely automated by means 
of a user friendly home-made software developed with 
Agilent VEE tools. By employing this modeling procedure, 
we extract ECP values that allow accurate device simulation 
without any tuning or optimization steps. The good agreement 
between measured and modeled S-parameters have been 
found at all investigated bias and temperature conditions and 
that confirms the validity of the employed procedure. 

As an example, in Fig. 13 we report the comparison 
between measured and modeled Sij parameters and the 
relevant percentage errors Eij at VDS = 1.8 V and VGS = –0.2 V 
under two different temperature conditions (290 K and 30 
K).Under this bias condition, cooling the device from 290 K 
down to 30 K leads to small variations of the S-parameters 
such as the phase shift of the input reflection coefficient S11 
towards 0° (the phase of S11 measured at 6 GHz increases 
from  88.1° to  81.8°) due to the observed lower Cgs and the 
increase of the magnitude of the reverse transmission 
coefficient S12 (|S12| measured at 6 GHz rises from 0.074 to 
0.087). It is interesting to note that it does not affect 
significantly the magnitude of S21 which represents a small 
signal RF gain factor of the device. Since this scattering 
parameter is strongly correlated to gm (see Fig. 9), its behavior 
at lower temperature can be linked to the counterbalancing of 
the electron transport properties improvement and the 
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decrease of the 2DEG concentration linked to the VTH shift. As 
a consequence, by lowering the temperature down to 30 K 
|S21| rises only when VGS is far from the pinch-off condition 
(see Fig. 11). 
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(a)  

E11 = 1.6%, E12 = 2.8%, E21 = 1.8%, E22 = 2.2%. 
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E11 = 3.7%, E12 = 5.1%, E21 = 3.1%, E22 = 7.2%. 

Fig.13. Comparison between measured (symbols) and modeled (solid 
lines) Sij-parameters with the relevant percentage errors Eij over a 
frequency range extending from 60 MHz to 6 GHz. The working 
condition is VDS = 1.8 V, VGS = -0.2 V and the temperature equal to 
290 K (a) and 30 K (b). S11 (circles), S22 (up triangles), 10*S12 
(squares) and S21 /5 (down triangles). 

V. NEURAL NETWORK TECHNIQUES 

In this section we report the development of two distinct 
ANN-based techniques for the modelization of microwave 
active devices. In particular, we selected a suitable neural 
structure and trained it adequately to obtain a global ANN that 
would allow us to perform a DC and RF modeling of the 
DUT. Furthermore, an ANN software utility for the noise 
characterization of microwave transistors down to cryogenic 
temperatures is reported. By this last procedure, jointly with 
an original characterization software written in our lab, we are 
able to reproduce the noise performance of several device 
types from only one measured S-parameter set, one frequency 
point and one noise figure (namely, F50) value. 

The adopted structure for the basic neural network 
arrangement is the so-called Multi-Layer Perceptrons (MLPs) 
with three stages (input and output layers and only one layer 
of hidden neurons). It has to be noted that MLP networks 
trained with a back-propagation algorithm are able to perform 
a general nolinear input/output mapping from the input space 
to the output space. The capability of opportunely trained 
MLP structures to approximate arbitrary continuous functions 
has been established by the so-called Cybenko theorem [17]. 
To this aim, the Levenberg-Marquardt (LM) back-propagation 
algorithm allows a reasonably good training of the ANNs 
structure. As a matter of fact, the LM algorithm has been 
tested on several function approximation problems and the 
obtained results indicated that it is very efficient when training 
networks having up to a few hundred weights [18]. 

An other aspect not to be underestimated is the MLP sizing. 
Indeed, the determination of the number of units to be 
employed in the hidden layer is not usually as straightforward 
as it is for the input and output layers. It has been established 
that a MLP with a number of neurons in the hidden layer too 
low cannot converge at all, while an oversized one can reach a 
very good error index, but it cannot perform a good global 
performance due to the excessive number of involved 
variables. In the scientific literature, a monitoring approach 
aimed at finding the optimal neuron number by cutting out the 
neurons that less contribute to the network behavior has been 
reported [19]. In addition, the use of a genetic algorithm 
approach to address the issue of the optimal topology of a 
MLP structure has been also presented [20]. 

Taking into account all the previous considerations, we 
firstly determined the ANN shown in Fig. 14, that was 
obtained by assembling three different subnets. The first 
subnet has three inputs and only one output. These inputs 
correspond to the values of the gate and drain voltages 
VGS,VDS and the operating temperature T. The output gives 
the value of the drain current IDS of the DUT. By suitably 
training this neural network, we could reproduce the DC 
behavior of the DUT, namely IDS = f(VDS ,VGS). In order to 
build up a suitable training set for the neural network, we have 
employed cryogenic DC and microwave measurements of a 
pHEMT device (MGF4319 by Mitsubishi Semiconductors) 
previously performed in our lab. The characterization data for 
this transistor were taken over a wide range of operating 
temperatures (from 220 K to 70 K) and in 0.05–6 GHz 



Mikrotalasna revija  Novembar 2006. 
 

24 

frequency range. Indeed, the measurements span the following 
ranges of parameter variability: 

0 ≤ VDS ≤ 2.5 V; 0 ≤ |VGS| ≤ 0.6 V;    0 ≤ IDS ≤ 31.6 mA. 
The second and the third networks have the same four 

inputs, namely VDS ,VGS, T and the frequency Freq, and 
present as outputs the magnitude and the angle of the S-
parameters, respectively. By these two subnets we model the 
small-signal behavior of the DUT. 

 
 

Checking by 
comparison with 
measured data

VDS

T

Freq

VGS

[S]

IDS

ANN

 
Fig. 14. Block diagram of the procedure for the I-V curve and S-
parameter extraction. 
 

By carrying out a suitable training step for all the subnets, 
the performance of the ANN structure is thus checked by 
comparison with a set of measured data that are not included 
in the training data set. In Fig. 15 we report the I-V curve 
comparison between test data and measured data for an 
operating temperature of 70 K. An analysis of this plot shows 
that the first subnet reproduces with a very good agreement 
the behavior of drain current IDS vs. VGS and VDS voltages at 
the chosen temperature. 

An ANN software utility for the determination of the noise 
parameters (NP) of the DUT are also developed, and the NP’s 
thus obtained are compared with direct measured 
experimental data. A cryogenic temperature test is also 
performed leading to very good results. It can be seen that the 
difference occurring between the expected NP values and the 
values calculated by the neural network does not evidence 
significant variations in the behavior of extracted noise 
parameters. 

By this ANN-based procedure, we are thus able to simulate 
the HEMT noise parameters of several device types from a 
reduced data set. The employed noise figure is that measured 
in input matched conditions, namely F50. 

The trained network outputs were compared with data of 
available noise measurements and the results were in very 
good agreement with the available data. It can be observed 
that the difference occurring between the expected value of 
the NPs and the value calculated by the neural network is 
negligible. 
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Fig. 15. I-V curve comparison between test data and measured data 
@ T = 70 K. 

Fig. 16 reports the adopted MLP structure of the developed 
ANN, that is composed of three layers. The input layer 
consists of ten neurons and its inputs are the scattering 
parameters S11, S12, S21, S22 (magnitude and phase), one 
frequency value and one noise figure value (i.e. F50). The 
output layer consists of four neurons, each corresponding to 
the four noise parameters of the DUT. Finally, the hidden-
layer employs twenty seven neurons. 
 

 
Fig. 16. The three-layers MLP structure adopted for ANN. 

 
By adopting this procedure, the ANN was initially trained 

by using data available from performed measurements. More 
specifically, it has employed the following devices (super 
low-noise pHEMT): 

 
i. Mitsubishi: MGF4319 (vs temperature); 
ii. NEC: NE20283 (vs temperature and bias); 
iii. Celeritek CF001 (vs temperature). 
 
Note that for the Mitsubishi device the measurements have 

been performed down to cryogenic temperatures, in the 6–18 
GHz frequency range. In the training set, it were used data 
available for all devices except those concerning the 
MGF4319 device at 65 K and 115 K. These data, together 
with other data, were employed for the validation set. The 
training time strongly depends on computer hardware 
characteristics. However this time is quite shorter than the 
tuning time required in CAD modeling procedures. Several 
ANN implementations with different numbers of hidden 
neurons were used for training step. By means of a 
performance analysis we were able to choose the best ANN 
model with the right balance between training time and output 
error. 

The neural network was tested with cryogenic temperature 
measurements of the MGF4319 device. The characterization 
data for this transistor were taken at different values of 
operating temperatures down to cryogenics levels (from 290 
K to 65 K). In Figs. 17-19 it is shown the performance of the 
neural network in terms of the NP’s for MGF4319 at 65 K and 
115 K. 
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Fig. 17. MGF4319 testing: comparison between test data and 
measured data for the optimum noise source reflection coefficient vs. 
temperature, in the 6 – 18 GHz frequency range. 
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Fig. 18. MGF4319 testing: comparison between test data and 
measured data for the minimum noise figure vs. temperature. 
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Fig. 19. MGF4319 testing: comparison between test data and 
measured data for the noise resistance, vs. temperature. 
 

A careful analysis of these diagrams allows to verify that 
the neural network generates a reasonably good prediction of 
the NP values down to cryogenic temperatures. It is here 
reported the behaviour of the minimum of noise figure and the 
noise resistance vs. frequency and temperature for all data 
generated by ANN procedure. More specifically, in Fig. 20 it 
can be seen that the minimum noise figure increases when the 

frequency increases and decreases when temperature 
decreases, as expected. In Fig. 21 it can be seen how the 
behaviour of the noise resistance is a parabolic-like type vs. 
frequency and, for a specified frequency, its value increases 
with temperature. 

 

 
Fig. 20. Minimum noise figure vs. frequency and temperature. 

The U-shaped behaviour vs. frequency is due to the 
parasitic effects (inductance-type) in the DUT. For the 
intrinsic device, the noise resistance is almost independent 
from frequency over the entire microwave range. Moreover, 
the performance of Rn strongly depends on the device 
characteristics. The role played by the input bonding 
inductance causes a marked decrease of the values of Rn 
offered by up-to-date chip devices, though introducing a 
frequency dependence. 

By improving the device characteristics with better 
materials and well-confined 2-D electron gas in the undoped 
channel, very low frequency independent values of Rn are 
expected from the chip device, thus making the inductance 
influence less acceptable [21]. 

 

 
Fig. 21. Noise resistance vs. frequency and temperature. 

 
Finally, it can be seen that the minimum noise figure Fmin 

and the noise resistance Rn are sensibly affected by thermal 
variations, whereas the optimum noise reflection coefficient 
Γopt is not. Upon decreasing the lattice temperature, the noise 
parameters Fmin and Rn lower because the temperature 
variations of the high-field electron velocity cause an increase 
of the transconductance. In addition, lower operating 
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temperatures cause the decrease of the thermal noise and the 
reduction of the diffusion noise, which is the dominant noise 
in field-effect devices at microwave frequencies [22]. 

VI. EVOLUTIONARY ALGORITHM APPROACH 

We here refer about the implementation of an Evolution 
Algorithm (EA) for the cryogenic noise modeling of 
microwave devices. Some preliminary applications of the EAs 
in the field of microwave component simulations have 
recently appeared in the scientific literature [23, 24], but here 
we have shown how EA’s can be employed to solve the noise 
modeling problem according to a black-box approach. The 
application refers to the simulation of the NPs of HEMT in the 
6-18 GHz frequency range and down to cryogenic 
temperatures (90 K) compared with experimental data. The 
quality of results indicates that EA techniques represent a 
truly alternative way to determine the microwave noise 
performance of HEMT devices, thus furnishing a flexible tool 
to support CAD of high sensitivity – ultra high speed circuits. 
In this case, the application of such algorithms concerns the 
performance of advanced microwave and millimeter-wave 
devices employed in the development of ultra-high bit rate 
telecommunication systems since the saturation of lower 
frequency slots and the need of wider bands pushes towards 
the requirements of ever increasing operating frequencies. 

The evolution algorithms are adaptive procedures that are 
mostly used for optimization and research problems [25]. 
These procedures are conceptually based on the principles of 
the natural evolution of the species. Living organisms consist 
of many cells and each cell contains one or more 
chromosomes that can be divided in genes. Each gene codifies 
a specified feature of the living organism. From the point of 
view of the information theory, the chromosome refers to a 
candidate solution. 

In the present analysis, a set of eight base functions 
constitutes the collection of the chromosomes, namely the 
initial population. This set realizes an infinite population of 
functions since the related coefficients are an infinite 
collection. Moreover, the main program of the EA assigns a 
set of suitable coefficients to the base functions. 
Subsequently, these functions  combine with each other. The 
high number of the potential solutions obtained ensures the 
generation of an optimum solution that exhibits the lowest 
error compared to the maximum fixed threshold. The “fitness” 
is warranted by a continuous comparison between the 
candidate solution and the measured value of each NP. The 
comparison ends when a chosen threshold for the fitness is 
reached. A convergence procedure is also carried out to refine 
the generated solutions by exploring its neighbor regions. The 
selection is achieved by successive “mutation” steps. In Fig. 
22 it is reported a flux diagram describing the adopted EA 
procedure. 

The obtained analytical equations thus provide an 
estimation of the behaviour of the NP’s down to cryogenic 
temperatures and also outside the frequency range under 
observation. This approach is original and very flexible 
because it does not require a training procedure like in the 
ANN-based systems. It also allows to perform an analysis of 

the stability performances of the parameters under test. By 
this procedure, a complete set of the NP’s for a commercial 
super low-noise pseudomorphic HEMT has been obtained. 
This transistor was previously measured in our laboratory and 
a complete noise characterization was performed vs. 
frequency and temperature. 
 

 
Start

Define a vector x that contains the frequency values
(conveniently normalized by a factor of 10)

Define a vector y that contains the measured data

Define an infinite population of functions
creating by fselect

 Yes 

 No 

Define n as the number of the measured data

Is fitting ok?

Execute the EA by instruction
ea=evalg(x,y,n,th)

Define a threshold error th for fitness purpose

Return and plot fitting equation

End  
Fig. 22. Flux diagram of the adopted EA procedure. 

 
Therefore, the EA performance for the noise modeling of 

the DUT has been checked by using these experimental data 
in the 6-18 GHz frequency range and down to cryogenic 
temperatures. The comparison between measured data and EA 
simulation of the NP’s vs. frequency and temperature (290-90 
K, step 50 K) for the chosen DUT was performed and the 
results are reported in Figs. 23–25. 

 

 
Fig. 23. Comparison between experimental data and EA simulation 
of the minimum noise figure Fmin vs. frequency and temperature for 
the MGF4319 device. 
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Fig. 24. Comparison between experimental data and EA simulation 
of the noise resistance Rn vs. frequency and temperature for the 
MGF4319 device. 

 
Fig. 25. Comparison between experimental data and EA simulation 
of the optimum noise reflection coefficient Γopt vs. frequency for the 
MGF4319 device at 90 K on the Smith chart. 
 

The following equation set (eqs. 12–14) reports the 
analytical expressions of the functions obtained by application 
of the EA procedure at all the considered temperatures 
(excepted for Γopt, which are reported only the functions at 90 
K): 
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where f is the normalized frequency (by a factor of 10). 
In Table 1 we show the percentage average error (PAE), 

calculated over the whole temperature range, obtained by 
using the EA functions determined. 

 
TABLE 1 

PAE USING EA FUNCTIONS 
 

Noise Parameter PAE 
Fmin 0.47 
Rn 1.58 
|Γopt| 2.43 
∠Γopt 3.05 

 
Finally, a thorough analysis of these plots allows to 

establish that application of the EA technique produces 
reasonably good values of the NP’s down to cryogenic 
temperatures for the DUT. Such results can be effectively 
employed either in analyzing the device performance in a 
wide range of operating conditions and in computer-aided 
design of low-noise circuits. An other advantage with respect 
to a concurrent black-box modeling approach, i.e. that 
employing ANN techniques where a critical training step must 
be carefully carried out, this algorithm adapts itself to 
whichever device performance without the need to supply any 
additional information. 

VII. CONCLUSION 
 

The aim of this work has been to give an overview of our 
most recent work in the field of characterization and 
modelling of advanced microwave transistors down to 
cryogenic temperature. Measurements of the DC 
characteristics, S parameters and noise figure have been 
investigated in detail with respect to the temperature. 
Furthermore, our efforts have been dedicated to extract robust 
models which can accurately represent the measured device 
characteristics over the entire analyzed temperature range. 
The obtained good level of agreement between measurements 
and models has confirmed the validity of the proposed 
extraction procedures, which are based on different types of 
approaches: analytical equations, by direct extraction, neural 
networks and evolutionary algorithms. 
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