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Accurate Design of Triplet Microstrip Square 
 Open-Loop Resonator Filters 

Marin V. Nedelchev, Ilia G.Iliev 
 
Abstract: This paper proposes a method for calculation of the 

coupling coefficients between coupled resonators used in triplet 
and cascaded triplet filters. Closed form formulas for the 
coupling coefficients are derived. The new approach for 
analytical computing the coupling coefficient represents an 
advance in the synthesis flexibility and reduces the time for 
design. The theory presented in the paper is validated by 
practical realizations of both main types of triplet filters. 
Measured results, obtained by the design technique, are shown. 
The results show very good agreement between the theory and 
measurement. 

Keywords: Microstrip bandpass filter, Cross-coupled resonators, 
coupling coefficients. 

I. INTRODUCTION 

In the modern communication systems, high selectivity and 
low passband loss are the main requirements for the 
microstrip filters. Low passband loss increases the system 
sensitivity and the high selectivity decrease the guard interval 
between two channels in a communication system. A better 
spectrum efficiency is achieved.  High filter selectivity 
requires high filter order and more resonators. Because of the 
low unloaded Q factor of the microstrip resonators, the 
passband loss increases. Both requirements become 
contradictory for cascaded microstrip filters. Filters satisfying 
the increased requirements are the cross-coupled filters. They 
have non-adjacent resonator coupling.  

The simplest cross-coupled filters are the trisection filters, 
proposed in [1,2]. They have asymmetric characteristics and 
one transmission zero (TZ) out of the passband. Quadruplet 
filters with one cross-coupling produces a pair of TZs 
symmetrically around the passband. These sections may be 
the core of cascaded triplet (CT) or cascaded quadruplet (CQ) 
filters [3,4,5] shown respectively on Fig.1a and Fig.1b.  

The microstrip filter synthesis includes calculating the 
coupling coefficients for a given approximation (a method for 
Chebyshev approximation is presented in [6,7]) and their 
realization. The theory of coupling for synchronously and 
asynchronously tuned resonators is given in [8,9]. 

 

   

 

      
(a)                                          (b) 

  Fig.1. Coupling and routing diagrams for cross-coupled filters. 
(a)Cascaded triplet. (b) Cascaded Quadruplet 

 

A full-wave electromagnetic (EM) simulator is used to 
calculate the couplings in the papers [1,2,4,8], which is an 
expensive and time-consuming method. The use of EM 
simulator is not a flexible way for computation of the 
coupling coefficients. A design technique for synthesis of CQ 
filters without the use of EM simulator is given in [10]. A 
closed form formulas are derived for the basic couplings in 
the CQ filters. 

          

 

     
(a)                                (b) 

Fig.2 Trisection filters. (a) realizes a TZ on the upper side of the 
passband. (b) realizes TZ on the lower side of the passband 

 In this paper is proposed a design technique for 
synthesis of trisection and CT filters (Fig.2) without full-wave 
EM simulator. Closed form formulas are derived for the 
coupling coefficients in the trisection and CT filters. Two 
filters are synthesized and measured. A comparison between 
the theoretical and the measured frequency responses is done 
and a good correlation is observed.  

II. COUPLING COEFFICIENTS FOR DIFFERENT 
RESONATOR CONFIGURATIONS IN CT FILTERS. 

The three microstrip square open-loop resonators in the 
trisection filter are asynchronously tuned. The self-resonant 
frequency of each resonator is f0i, which is different from the 
filter’s central frequency f0. Resonators 1 and 3 are tuned on 
an equal frequency, i.e. 01 03f f f= = . For the microstrip 

square open-loop resonators their electrical length is 
2

i

π
θ ≈  

rad for 0 if f= , i=1,2,3.  

A. Electrical coupling 

The cross-coupling between resonators 1 and 3, shown on 
Fig.2a, is electrical in nature, because the open ends of the 
lines are close and the electric fringe field is much stronger 
near the open ends. The coupled resonators are tuned on equal 
frequency and a closed form formula for the coupling 
coefficient is derived in [10] (Fig.3): 
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Fig.3 Electric coupling. (a) Resonator topology (b) Equivalent 
scheme 
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where Zc is the characteristic impedance of the transmission 
line, 

Ze и Zo are the even and odd impedances of the 
coupled lines 
θ1 is the electrical length of the resonators 
θe is the length of the coupled lines 

b is the admittance slope of the resonators.  
 

B. Magnetic coupling 

The cross-coupling between resonators 1 and 3, shown on 
Fig.2b is magnetic in nature, because of the virtual ground in 
the middle of the resonator. A closed form formula for the 
coupling coefficient is derived in [10]. Figure 4 shows the 
resonator configuration and their equivalent scheme. 
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(a)                          (b) 

Fig.4 Magnetic coupling. (a) Resonator topology (b) Equivalent 
scheme 
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where θm is the coupled line length. 
 

C. Hybrid coupling. 

Hybrid coupled resonators are shown on Fig.5a and Fig.6a. 
For this type of coupling none of the electromagnetic field 
components is much stronger than the other. It is important for 
these case that the resonators are asynchronously tuned. Their 
self-resonant frequencies are f01 и f02 and the electrical lengths 
are respectively θ1 andθ2 for the central frequency f0.  
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(a)                                                    (b) 

Fig.5 Hybrid coupling 1 (a) Resonator topology (b) Equivalent 
scheme 
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(a)                                                    (b) 

Fig.6 Hybrid coupling 2. (a) Resonator topology (b) Equivalent 
scheme 

For the hybrid coupling shown on Fig.5a and using the 
equivalent scheme on Fig.5b for the coupling coefficient is 
derived: 
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For the hybrid coupling shown on Fig.6a and using the 
equivalent scheme on Fig.6b for the coupling coefficient is 
derived: 
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D. Tapped input/output electrical length 

The tapped electrical length θt is found in [11] (Fig.7): 
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Fig.7. Tapped microstrip open-loop resonator 

 

III. DESIGN TECHNIQUE FOR TRISECTION AND CT 
FILTERS. 

1. Calculating the coupling matrix M and the external Q 
factor [6]. 

2. Finding the resonator parameters and the resonator self-
resonant frequency. The main diagonal elements in the 
coupling matrix (Mii) show the frequency deviation of each 
resonator. The angular self-resonant frequencies are the 
positive root of the equation: 

2 2
0 0 0 0 0i ii iMω ω ω ω− − =  

Choosing the transmission line characteristic impedance Zc 
and calculating the admittance slope parameter bi.  

3. Calculating the even and odd impedances of the coupled 
lines for different couplings Eqs. (1-4), the tapped 
input/output line length Eq. (5). 

4. Computing the geometric dimensions of the filter for a 
given substrate. 

5. Optimisation of the filter parameters. 

IV. DESIGN EXAMPLES. 

Two trisection filters are synthesized using the proposed 
formulas for the coupling coefficients. They are fabricated on 
a milling machine. The frequency responses are measured on 
HP8510C vector network analyzer. The analysis is performed 
using the electrical parameters of the filter. Both filters have 
central frequency f0=1.03GHz, and fractional bandwidth 
FBW=0.0776. Both filters are fabricated on FR4 substrate 
with 4.5rε = , height 1.5h mm= and 0.019tgδ = . 
Considering the substrate parameters, high insertion loss is 
expected. 

The first filter has a prescribed TZ on a frequency 
f0=900MHz. The photograph of the filter is shown on fig.8. As 
can be seen the in-line couplings (1-2 and 2-3 resonators) are 
hybrid of I type (fig5). The cross coupling (1-3 resonator) is 
magnetic (fig.4). 
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Using Eqs. (2) and (3) are computed the even and odd 
mode impedances of the coupled lines for hybrid and 
magnetic coupling. The results are summarized in Table I. 

TABLE1 
ELECTRICAL PARAMETERS OF THE COUPLED LINES 

 Even mode 
impedance 

Ze [Ω] 

Odd mode 
impedanc Zo 

[Ω] 

Electrical 
length of the 
coupled lines  

[deg] 
Hybrid 

coupling of I 
type 

74 33.78 30 

Magnetic 
coupling 55.44 45.09 40 

 
The coupling matrix is computed as: 

0 0.0945 0 0 0

0.0945 0.0094 0.0839 0.0382 0

0 0.0839 0.0369 0.0839 0

0 0.0382 0.0839 0.0094 0.0945

0 0 0 0.0945 0

M = −

 
 
 
 
 
 
  

 

 The self-resonant frequencies are computed as follows: 
f01=f03=1026MHz and f02=1045.5MHz. 

 

 
Fig.8 Photograph of the fabricated Filter1 

 

 
(a) 

 
(b) 

Fig.9.Filter 1 Measured frequency responses. (a) Insertion (solid 
line) and return (dashed line) loss. (b) Wideband frequency responses 

The measured narrow and wideband frequency responses of 
the filter are shown on Fig.9. As can be seen from fig.9a the 
center frequency and the frequency responses of the filter are 
10MHz higher than the prescribed 1030MHz. The measured 
bandwidth of the filter is 9MHz wider than the prescribed 
80MHz. The attenuation in the passband is 3.4dB, mainly due 
to the dielectric losses in the substrate and the conductor 
losses. It is clearly seen that the return loss is better than -
14.5dB and assures good matching of the filter with other 
devices connected to its input and output. The measured 
attenuation for the TZ frequency is better than 50dB and 
assures good suppression of neighbour channels in the lower 
stopband of the filter. The frequency of the TZ could be finely 
adjusted by tuning the cross coupling between the first and the 
third resonators. There is a parasitic TZ clearly seen in the 
wideband response on fig.9b. It is placed on 1400MHz. The 
close placement of the input and output transmission lines 
(fig.8) causes an extra TZ in the upper stopband of the filter. 
The frequency of this TZ could be adjusted by a tuning screw 
or a different distance between the input/output lines. The first 
parasitic passband is placed on the second harmonic of the 
central frequency. The filter is based on nearly halfwave 
resonators and such a result is expected.  

B. The second filter has a prescribed TZ on a frequency 
f0=1150MHz (Fig.2a). The coupling matrix is computed as: 

0 0.0946 0 0 0

0.0946 0.0077 0.0861 0.0308 0

0 0.0861 0.0299 0.0861 0

0 0.0308 0.0861 0.0077 0.0946

0 0 0 0.0946 0

M

− −

=

− −

 
 
 
 
 
 
  

 

The self-resonant frequencies are computed as follows: 
f01=f03=1034.9MHz and f02=1011.2MHz. The photograph of 
the fabricated experimental filter is shown on fig.10. As can 
be clearly seen the in-line couplings (1-2 and 2-3 resonators) 
are hybrid of II type (fig.6). The cross coupling (1-3 
resonator) is electric (fig.3). Using the derived Eqs. (1) and (4) 
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are computed the even and odd mode impedances of the 
coupled lines for hybrid and electric coupling. The results are 
shown in Table II. 

TABLE II 
ELECTRICAL PARAMETERS OF THE COUPLED LINES 

 Even mode 
impedance 

Ze [Ω] 

Odd mode 
impedanc Zo 

[Ω] 

Electrical 
length of the 
coupled lines  

[deg] 
Hybrid 

coupling of 
II type 

77.75 32.15 30 

Electrical 
coupling 57.52 43.46 10 

 

 
Fig.10. Photograph of the fabricated Filter2  

 
The frequency responses of the filter are shown on Fig.11. 
It is clearly seen from fig.11, that the measured responses 

are shifted with 10MHz in the higher frequencies. The 
measured central frequency of the filter is 1040MHz. The 
measured -3dB bandwidth is 70MHz and obviously is 10MHz 
narrower than the defined 80MHz. The minimum insertion 
loss is 3.8dB, and the attenuation on the frequency of the TZ 
is -44dB. The maximum value of the return loss is -10.4dB 
and assures good matching of the filter. The parasitic 
passband placed on the second harmonic of the center 
frequency of the filter is not well pronounced.  

 

 
(a) 

 
(b) 

Fig.11.Filter 2 Measured frequency responses. (a) Transmission  
(solid line) and reflection (dashed line) coefficients. (b) Wideband 

frequency responses 

V. CONCLUSION 

The paper proposes a method for synthesis of trisection or 
CT filters. Closed-form formulas for different type of 
couplings are derived. The computation of the coupling 
coefficients is carried out without using a full-wave EM 
simulator. Measured results of two triplet filters are presented 
to validate the theory. There is a good agreement between the 
presented theory and the measurement results.  
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