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An Overview of Recent Developments in Microring 
Resonator Based Photonic Circuits 

Otto Schwelb 
 

Abstract – Microring and microdisk resonators are used in 
photonic circuits to perform filter functions, serve as band-
limited mirrors in lasers, compensate for dispersion and group 
delay distortion, are used in multiplexers in telecommunication 
systems, and a number of other applications such as medical 
instrumentation, biosensing, interferometry, to name a few. This 
paper outlines some challenges and solutions in this relatively 
new and prolific discipline. 

Keywords – Ring resonator, Photonic circuit, Add/drop 
multiplexer, Optical filter, High-Q optical resonator. 

I. INTRODUCTION 

Photonic filters and circuits performing filter functions 
require resonant elements. These microresonators are most 
often ring or disk resonators fabricated using integrated circuit 
technology. The size of these resonators is in the order of tens 
or hundreds of wavelengths, the smaller the size and the 
smaller the bending radii the more critical become radiation 
losses and fabrication tolerances. Due to their small size and 
thanks to significant advances in fabrication technology, high 
density packing of these resonators can now be realized to 
support VLSI photonics. 

Unlike in microwave resonators where metallic boundaries 
exist to contain the electromagnetic field, in the optical 
domain one relies on the refractive index contrast to prevent 
leakage. This requires that careful attention be paid to the 
proximity and smoothness of boundary surfaces. As in 
microwave filter structures built with reentrant cavities, 
optical filters using ring resonators, or grating assisted Fabry-
Pérot resonators, have a comb spectrum where the passband 
reappears periodically, separated by the so-called free spectral 
range (FSR). In multichannel communication or sensing the 
spectral width of the FSR is important, because within its 
range must fit all the passbands of the other channels of the 
system. The extension of the FSR to accommodate all 
channels is therefore one of the critical design issues of 
multiring resonator based photonic devices. 

 Another critical issue, common in filter design, is the roll-
off or shape factor that defines the transition region between 
passband and stopband. It is well known that an increase in 
filter order leads to an increase in selectivity and that 
Butterworth (maximally flat) and Chebyshev (equal ripple) 
design principles are available in optical filter design, much as 
for microwave filters, to shape the passband. Since, however, 
optical resonators are coupled by the overlap of the 
evanescent tail of their field, construction of multiring optical 
filters is a more difficult process. 

The range of applications of multiring based photonic 
circuits is extensive. In addition to communication filters they 
are used as add/drop multiplexers, sensors, mirrors, 
interferometers, modulators and in numerous industrial, 
medical and aeronautical applications. This paper focuses on 
functions and implementations, on analysis and design, 
leaving the extensive area of fabrication technology 
untouched. We shall begin with enumerating some of the 
analytical methods used in photonic circuit design, followed 
by a discussion of challenges, solutions and modern 
developments in this relatively young discipline. 

II. ANALYTICAL METHODS 

The basic components of photonic circuits are the 
proximity coupler, the ring resonator, the grating, the 
multimode interference (MMI) coupler and the arrayed 
waveguide grating (AWG). Of these only the first two play an 
explicit role in our present discussion. The coupler consists of 
two waveguides in close proximity, has four ports and its 
function is to transfer energy from one waveguide to the other 
by exploiting the overlap of the evanescent tails of the optical 
fields of the guides [1]. For weak interactions, the coupling is 
the stronger the closer are the guides and the longer the region 
of interaction. Since the field outside the waveguide decays 
exponentially the separation must be a fraction of the 
wavelength. Although the interaction is distributed over a 
finite length, for analytical and numerical purposes proximity 
couplers are usually treated as lumped element devices, i.e., 
the interaction is assumed to take place in a point. A 
schematic representation of a coupler is shown in Fig. 1, 
indicating alternative pairs of connections, ai and bi are 
incoming and outgoing waves, respectively [2]. 

o

o

o

o

I

I

II

II
III III

a1

b1

a

a

ab

b

b2

2

3

3

4

4
 

Fig. 1. Generalized lumped element 2×2 coupler. The paths I, II and 
III depict either direct or coupled connection between ports. 

An ideal lumped element coupler has two axes of 
symmetry: it is both bilaterally (vertical symmetry axis) and 
transversally (horizontal symmetry axis) symmetric. A direct 
connection is defined by √(1−K) while a coupled connection 
is defined by j√K, where K is the power coupling coefficient. 
Note that there is a π/2 phase difference between direct and 
coupled connections and that the total power, the sum of the 
magnitudes squared, is conserved. Coupler loss is admitted by 
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the loss factor a = √(1−γ), not to be confused with the 
incoming wave amplitudes ai, and γ is the fractional loss. 

Ring resonators [3], [4] are defined by their average 
perimeter length L and by the effective refractive index of the 
guide ne. The product of these numbers is the so-called optical 
length of the resonator. Ring resonators are also characterized 
by their mode number N = Lne/λ0, where λ0 is the design 
wavelength and by the time delay of a round trip: τ0 = Lne/c. 
Note that ring resonators need not be circular; they often have 
racetrack or other shapes. Critical is the bending radius which 
determines radiation loss. Since resonances occur whenever N 
is an integer the spectrum of resonances displays a comb 
structure. The distance between consecutive resonances is the 
free spectral range (FSR). The width of the FSR plays a key 
role in multichannel communication. It must be sufficiently 
wide to accommodate all channels, and it must be free of 
spurious signals that could interfere with them (see extending 
the FSR in section IV). 

The most elementary but also the most cumbersome 
analytical method to investigate the operation of a multiring 
photonic circuit is to write out explicitly the node and loop 
equations, and extract from them the complex output wave 
amplitudes normalized to the input amplitude. In essence this 
method provides the all-important scattering coefficients of 
the device from which transfer intensity, phase, group delay 
and dispersion characteristics can be computed [5]. 

A transfer matrix based method has been used to obtain the 
characteristics of all types of photonic circuits since 1998 [2]. 
The gist of this method is the rearrangement of the photonic 
circuit into a feedback assisted four-port, the scattering matrix 
of which can be expressed in closed form. The four-port itself 
is a cascaded set of four-ports whose overall transfer matrix is 
evaluated by classical matrix multiplication. It turns out that 
by using the concept of the generalized lumped element 
coupler [2], virtually all 2-D photonic circuit topologies are 
amenable to the analytic treatment described there. A narrow-
band double-ring mirror and its feedback assisted cascaded 
chain equivalent, shown in Fig. 2, illustrates the method. 
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Fig. 2. Double-ring mirror device and its schematic representation. 

Another analytic method applicable to series-, or direct- 
coupled microring circuits is the so-called iterative method 
illustrated in Fig. 3 [6]. The effect of the 1st ring is embedded 

into the second, their combined effect embedded into the 
third, and so on, until the effect of the entire chain is manifest 
in the transmission coefficient of the main bus waveguide. 
Analytically this is expressed by  

 

Fig. 3. Application of the iterative method to direct-coupled rings. 
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where tj is the transmission factor embedded into the j-th ring, 
caused by the presence of the (j−1)-th. 

To treat a long chain of cascaded four-ports Bloch-wave 
analysis, well known in microwave periodic filter and grating 
design, has been proposed [7]. Two examples are shown 
below in Fig. 4; in a) a so-called coupled-resonator optical 
waveguide (CROW) delay line [8] and in b) a parallel-coupled 
multiring filter [9]. 
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b) 
Fig. 4. a) Cascaded resonant optical waveguide (CROW), b) parallel-

coupled multiring filter. 

We mention one more graphical/analytical approach to treat 
an optical circuit, namely the signal flow graph, or Mason’s 
method [10]. As long as the complexity of the circuit is 
moderate and waves circulate in the rings only in one 
direction, the signal flow graphs are easy to handle. However, 
complex circuits and/or counter-propagating waves in the 
rings render this method quite cumbersome. Furthermore, 
group delay and dispersion characteristics cannot be directly 
extracted from flow graphs. 

The methods so far enumerated analyze the device as a 
circuit. More fundamental approaches consider the 
electromagnetic field within the integrated structure and solve 
the appropriate Maxwell’s equations to various degrees of 
approximation. Extensive recent investigations on 
microcavities and periodic structures under the umbrella 
organizations European Cooperation in the field of Scientific 
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and Technical Research (COST268) and Next Generation 
Active Integrated Optical Subsystems (NAIS) produced 
important results regarding radiation from bent waveguides, 
computation of the coupling between a channel waveguide 
and microdisk, resonance frequency shift due to self coupling, 
etc. [11]. Some of these computations use the full vectorial 
formulation of the field, some use the coupled mode 
approximation, while others use the Finite Difference Time 
Domain (FDTD) method [12]. Fig. 5 illustrates, for example, 
the 1µm wavelength TE1 whispering gallery mode of a 8µm 
diameter disk, obtained using bend-mode solutions of the 
Maxwell equations, and the geometry of a vertically coupled 
add/drop multiplexer. Analytical solutions were compared 
with those obtained by the FDTD method and showed very 
good agreement. 

      
Fig. 5. TE1 whispering gallery mode of a r = 4µm microdisk 

resonator and 3-D geometry of a vertically coupled add/drop filter. 

III. FILTER STRUCTURES 

The simplest filter using a ring resonator is an all-pass filter 
consisting of a ring resonator coupled to a waveguide (see Fig. 
6). The filter has only two ports and if there are no 
discontinuities (inclusions, surface defects) in the ring it does 
not reflect, therefore the energy that is not absorbed in the ring 
must exit at the output. In the absence of loss the output 
intensity is equal to the input intensity. When the ring is lossy 
a relatively large amount of power is lost at resonance 
creating a notch in the transmission characteristics. The phase 
characteristics shown as a function of coupling strength and 
detuning from resonance in Fig. 7, is strongly influenced by 
the relationship between the loss coefficient and the coupling 
coefficient [4]. When 1 exp( 2 )critK K Lα< = − − the phase 
characteristics is anomalous, otherwise it is normal.  
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Fig. 6. Single-ring notch filter. 

One of the most often used filters is the add/drop or channel 
dropping multiplexer. The simplest configurations are shown 
graphically in Fig. 8; a) and b) single-ring multiplexer, c) and 
d) series-coupled (or direct-coupled) double ring multiplexer, 
e) parallel-coupled single-ring multiplexer. The arrows 
indicate signal flow, coupling occurs where guides are in 
close proximity, and the replicated configurations of b) and d) 
are especially suited for dense photonic integration. The 
coupling between the rings, or between ring and bus guide can 
be lateral or vertical. The former places the coupled guides on 
the same plane beside each other, so the index contrast 
between core and cladding is restricted to small values. The 
latter, illustrated in Fig. 5, places ring and waveguide on 
different planes allowing for large index contrast and 
significant diameter reduction without radiation penalty. 

 
Fig. 7. Transmission phase of a ring resonator (Fig. 6) as a function 

of K and detuning. The loss/turn is 0.942dB. Above the critical 
coupling, Kr = 0.195, the phase characteristic changes from 

anomalous to normal. 
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Fig. 8. Single-ring and double-ring, series-coupled and parallel-

coupled add/drop multiplexer configurations. 

Computed transmission and group delay characteristics of 
lossless direct-coupled Chebyshev (equiripple) filters of 
increasing order are plotted in Figs. 9 and 10 [13]. These 
filters have the same architecture as Fig. 4a), they are 
symmetric in the sense that the coupling coefficient (Ki) as 
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well as the perimeter length (Li) distribution is symmetric and 
demonstrate the increasing roll-off steepness and increasing 
peak delay as the filter order increases. The synthesis 
procedure for this as well as for the Butterworth (maximally 
flat) filters follows the well known microwave filter design. 

 
Fig. 9. Drop-port (solid) and through-port (dotted) characteristics of 
N = 3, 5 and 7 ring direct coupled Chebyshev filters, BW = 20GHz, 

FSR = 100GHz [13]. 

 
Fig. 10. Group delay characteristic of the Chebyshev filters of Fig. 9. 

When the distance between adjacent rings l in Fig. 8e) is 
chosen appropriately to exploit the constructive interference 
between the two paths to the output, i.e., when the filter is 
phase matched, the filter provides a very convenient stopband 
characteristic featuring large, constant suppression shown in 
Fig. 11 [14]. The dotted curves of the figure also show the 
drop-port transmission as l deviates from optimum. The length 
can be adjusted by thermooptic or electrooptic means. 

The improvement obtained from reducing coupling strength 
is demonstrated in Fig. 12, showing the drop-port and 
through-port characteristics of parallel-coupled triple-ring 
chains for three coupling coefficient combinations. Here the 
mode number of the rings is N = 100 and 2l = 100.5λ0/ne. 
More complex configurations have also been proposed to 
improve the 1dB/10dB shape factor of parallel-coupled, 
phase-matched filter chains [15]. 

IV. VERNIER DESIGN 

In order to increase the FSR of the filter to accommodate a 
large number of channels, the option that avoids a drastic 
reduction of the ring radius calls for it to be changed 
fractionally according to the expression 

 1 1 2 2m FSR m FSR FSR= =  (2) 
where m1 and m2 are integers, FSR1 and FSR2 refer to the two 
rings of the device and FSR is the resultant extended free 
spectral range. Simple arithmetic yields  
   

 
 
 
 
 
 
 
 
 
 

Fig. 11. Drop-port transmission of the phase-matched, double-ring 
filter of Fig. 8e). Dotted plots show the effect of deviation from exact 

phase matching. 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 12. Drop-port (solid) and through-port (dotted) characteristics of 
parallel-coupled, phase-matched triple-ring filters. Narrow band: K1 
= 0.2, K2 = 0.0116, medium band: K1 = 0.35, K2 = 0.041, wide band: 

K1 = 0.5, K2 = 0.0985. 
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where ng is the group index. These expressions indicate that 
by proper selection of m1 and m2 arbitrarily large extension 
ratios can theoretically be obtained, however the suppression 
of interstitial modes in the stopband, which must be at least 
20-25dB, imposes a limit [16]. A double-ring Vernier filter 
together with its drop-port characteristics is shown in Fig. 13, 
indicating that the spurious modes adjacent to the passband at 
f0 ± FSR1,2 are not sufficiently suppressed [17]. 

  
Fig. 13. A double-ring Vernier filter [17] and its drop-port 

characteristics K1 = K2 = 10-6, K3 = K4 = 10-4, m1 = 10. 

A universal curve [16] has been obtained for direct-coupled 
double- and triple-ring multiplexers that can be used to 
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determine the minimum percentile perimeter length reduction 
to ensure a set level of suppression of the most critical 
interstitial signals at f0 ± FSR1. This universal curve, valid for 
K1 = 0.01, shown in Fig. 14, can be applied to both double- 
and triple-ring filters. When the ring-to-waveguide coupling is 
 different from 0.01 the expression 
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can be used to determine the new level of suppression. 

 
Fig. 14. Suppression of the most critical interstitial resonance at f0 ± 
FSR1 in lossless double-ring and asymmetrical triple-ring filters as a 

function of percentile size reduction, using K1 = 0.01 and K2 = 
1.533×10-5. Use (4) to compute the suppression for other K1 values. 

V. MIRRORS AND REFLECTORS 

Beginning with the fiber loop reflector [18], one of earliest 
fiber optic device consisting of a 3dB coupler terminated by a 
fiber loop, several microring resonator based devices have 
been reported for use as band limited reflectors and laser 
mirrors [19-24]. Two of these devices are shown in Fig. 15. 
They have two ports, port 1 is the input port which reflects in 
a narrow band of frequencies (the passband) all the input 
intensity except the fraction that is absorbed by mirror losses, 
and port 2 where the input signal that falls outside the 
passband exits. Denoting the coupling coefficient(s) between 
the mirror and the bus waveguide by Kc, the mirrors are 
optimized in the sense that for a given Kc the internal 
couplings are chosen to provide a sufficient suppression level, 
say −25dB, for the throughput intensity in the passband. 

A typical optimized reflection (I11) and transmission (I21) 
characteristic of a lossless mirror depicted in Fig. 15a) is 
shown in Fig. 16. The design wavelength is λ0 = 1.55µm, ne = 
1.5, L = 0.517mm (N = 500), Kc = 0.3 and K = Kopt = 0.178. 
The abscissa represents detuning from resonance (f0); to 
obtain its value in Hz multiply by the velocity of light in 
vacuum in mm/s. In the optimization process we selected a K 
value that provided an insertion loss (IL) of approximately 
−27dB at f0. Fig. 17 plots the dependence of Kopt on Kc, at IL = 
−27dB, for a lossless mirror. Optimization does not depend on 
L, but the BW is inversely proportional to it. Fig. 17 also plots 
the BW at IL = −15dB, for L = 0.207mm (N = 200). To obtain 
the corresponding BW for e.g., N = 500 divide the BW values 
of Fig. 17 by the perimeter ratio: 2.5. As Kc is increased the 

rejection diminishes, Kc ≤ 0.25 will ensure a maximum 
rejection of more than 25dB at the centre of the stopband. 

The reflection coefficient of the mirror is diminished by the 
amount of power lost (due to absorption, radiation, etc.) in the 
rings. Reflection coefficients of four mirror configurations as 
a function of Kc using N = 200 and α =2dB/cm appear in [23]. 
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Fig. 15. A double- [23] and a triple-ring [20] mirror structure. 

 
Fig. 16. Reflection (solid) and transmission (dotted) characteristics of 
the double-ring mirror of Fig. 15a), parameters are given in the text. 

 
Fig. 17. Dependence of Kopt and BW on Kc in Fig. 15a) (N  = 200). 

The bandwidth is inversely proportional to L. Kc ≤ 0.25 ensures 
larger than 25dB rejection at the centre of the stopband. 

VI. COMPOSITES AND PHASE ENGINEERING 

With the advent of high precision fabrication technology 
and new materials, offering high index contrast and low 
material dispersion, construction of compact, high density 
multiring devices and a new discipline, appropriately named 
‘phase engineering’ is emerging. In this regard the first to 
mention are concatenated single- and double-microring 
waveguides, illustrated in Figs. 18 to 20. 
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Fig. 18. Coupled resonator optical waveguide (CROW) shown as 

cascaded gratings (a) and direct-coupled microrings (b) [25]. 

 
Fig. 19. Transmission a), phase b) and group delay c) response of the 

10 and 11 element CROW shown in Fig. 18. 
 

Considering Fig. 20 observe that the single channel SCISSOR 
(top) and the twisted double channel SCISSOR (bottom) waveguides 
support co-directional wave propagation. As a result these 
waveguides have no bandgap and their group delay remains finite. In 
contrast the double channel SCISSOR waveguide supports contra-
directional wave propagation, there are forbidden gaps in the Bloch 
diagram and the group index has poles at the band edges. Two 
qualitatively different type of bandgaps occur. For spectral 
components satisfying the Bragg condition: λ = 2neL/mB, where L 
is the spacing between the rings, the bandgap is direct and 
results from distributed Bragg reflection. For spectral 
components satisfying ring resonance: λ = 2πneR/mR, the 
bandgap is indirect and results from strong resonator-mediated 
backcoupling. The numbers that appear in this diagram are 
those of mB and mR, respectively. 

A series-parallel coupled microring stopband filter has been 
reported providing characteristics very similar to a long Bragg 
grating [27]. The transmission and group delay responses 
shown in Fig. 22 for filters built with N + 2 rings have the 
same features as shallow Bragg gratings with large NG∆n/n 
numbers, where ∆n/n is the relative index difference. The 
coupling coefficients between the rings were 7×10-4, those 
between the rings and the buss-bar 0.214 and the ring 
circumferences at the design frequency were 150 
wavelengths. The extremely high peaks of the band edge 
group delay speaks of reduced speed of wave propagation 
(‘slow light’) in this frequency region. 

Phase engineering recently has produced more audacious 
microring configurations, two of which are introduced below. 
The first is a coupled ring-enhanced Mach-Zehnder 
interferometer [28], depicted in Fig. 23. Coupling occurs 
between rings within a column but not between columns. Fig. 

24 plots the transmission amplitude (top), the effective phase 
(middle) and the bar output (bottom) of a 6 × 6 ring device 
with K = 0.36 power coupling coefficients. The second is a 
mutually coupled matrix of microrings, shown in Fig. 25, 
where the first and last rings are coupled to the input/output 
waveguides. Any one ring can be coupled to a maximum of 
four adjoining units. In [29] a synthesis procedure for elliptic 
filters of this configuration is presented. Fig. 26 plots the S11 
and S21 parameters of a 6th order prototype filter. The filter is 
designed to have 0.05dB passband ripple and 40dB stopband 
rejection. The inset shows the computed passband response. 

 

 

 

 

 

 
Fig. 20. Three SCISSOR waveguides and their normalized group 
index, effective propagation vector and group velocity dispersion 

response as a function of wavelength [26]. 
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Fig. 21. Mutually-coupled microring stopband filter. 
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Fig. 22. Transmission (top) and group delay (bottom) responses of 

the mutually-coupled filter of Fig. 21 with N + 2 rings. 

 
Fig. 23. Coupled ring-enhanced Mach-Zehnder interferometer. 

Coupling occurs between rings within the column, but not between 
columns [28]. 

 
Fig. 24. Transmission amplitude (top), effective phase (middle) and 

bar output (bottom) of the interferometer in Fig. 23 [28]. 

 
Fig. 25. 2-D array of N mutually coupled resonators where the first 

and last rings are coupled to the output waveguides [29]. 
 

 
Fig. 26. S11 and S21 parameters of a 6th order prototype filter with 
0.05dB passband ripple and 40dB stopband rejection. The inset 

shows the computed passband response [29]. 

Further composite devices, which we can only briefly 
mention in this review, are the vertically stacked multiring 
resonator [30] and the coiled optical resonator [31], shown 
below in Figs. 27 and 28, respectively. 

 
Fig. 27. The vertically stacked multiring resonator [30]. 

 
Fig. 28. The coiled optical resonator (COR) [31]. 
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In closing we would like to mention that thanks to 
improved fabrication technology resonator loaded Q factors in 
recent years have reached 139,000 [32, 33] and that these 
huge values have been reached as the ring radius continues to 
decrease. 

VII. CONCLUSIONS 

An overview of challenges and some solutions in the field 
of modern photonic microresonator devices used in 
telecommunications and sensing has been presented. 
Emphasis was placed on experimental and simulated 
performance characteristics, while technological and 
fabrication aspects were left untreated. Important recent 
developments in microresonator devices associated with 
active components, electrooptic and themooptic control, and 
the vast area of nonlinear applications were also considered 
outside the scope of this review. 
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