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Abstract – We investigated propagation of electromagnetic 
waves through composite structures with negative refractive 
index, the popular ”left-handed metamaterials”, for the case 
when there is a gradient of refractive index. We obtained the 
exact analytical solutions to the Helmholtz equation valid for 
arbitrary steepness of the graded interface between the positive 
and the negative index part. We analyzed the special case of 
matched impedances of the two constituent materials within the 
metamaterial composite. We derived analytical expressions for 
the field intensity, transmission and reflection coefficients and 
compared them with the results obtained by the numerical 
simulations using the Finite Element Method. The model allows 
for arbitrary spectral dispersion and lossy media.  
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I. INTRODUCTION 

The negative refractive index metamaterials (NRM) [1], 
also known as left-handed metamaterials (LHM) are a new 
class of artificial composite materials. They are structures 
ordered at subwavelength level, furnishing a negative value of 
refractive index in a certain wavelength range. Typically they 
include negative magnetic permeability "particles" (for 
instance double split ring resonators) and negative dielectric 
permittivity ones (e.g. wire arrays, complementary split rings, 
etc.). NRM host a number of unusual properties. The direction 
of the Pointing vector in these materials is opposite to that of 
the wavevector, i.e. the vectors of the electric and magnetic 
field and the wavevector form a left-oriented set, contrary to 
conventional materials. The first theoretical consideration on 
the topic, written by Veselago, appeared as early as in [2]. In 
his seminal works Pendry [3], [4], [5] brought the concept to 
practical implementation, which resulted in a literal explosion 
of the interest for that topic ([1] and references therein). The 
first experimental confirmations were presented in [8]. 
Gradient index NRM could be useful in many various 
applications, for instance in lensing and filtering, for 
antireflection coatings, etc. Among especially important 
applications are superlenses [5], [6] and hyperlenses [7], 
which enable imaging below the diffraction limit through 
restoring evanescent waves in near field. Especially 

interesting are hyperlenses, which convert near-field, 
subwavelength data to far field waves. Actually, any realistic 
structures containing both positive and negative index 
materials may well have a graded profile. Introduction of a 
refractive index gradient ensures an additional degree of 
freedom in their design. 

Graded index NRM have been extensively studied. 
Ramakrishna described a metamaterial lens composed of 
gradient index media [9]. Smith et al [10] handled graded 
index metamaterials experimentally and proposed the use of 
such metamaterial lenses for the coupling with radiative 
elements in high-gain antenna applications. A numerical study 
of gradient index structures containing metamaterials was 
presented in [11]. Other papers on graded index NRM 
structures include [12], [13] and [14]. The determination of 
spectral parameters of metamaterial structures is currently 
mostly done by numerical simulation, and typically either by 
finite difference time domain method [15] or by finite 
elements method [16]. Analytical considerations for the case 
of graded negative refractive index materials have been 
discussed in [17], [18].  

In this paper we solve analytically the Helmholtz equation 
for a structure with a graded interface between the positive 
and the negative refractive index region. We utilize the finite 
element method to numerically determine the electric field 
and the scattering parameters and to compare them with our 
analytical solution. 

II. FIELD EQUATIONS 

We start our analysis with the Maxwell equations and the 
only assumption we make at this point is that the fields are 
periodic in time, depending on exp(iωt) and that the material 
properties can be expressed by their effective dielectric 
permittivity and effective magnetic permeability. In the case 
of optical left-handed metamaterials this assumption is valid, 
since the nanostructuring to obtain negative refraction must be 
done at the subwavelength level. The geometry of the problem 
is illustrated in Figure 1. 

The electric field vector is directed along the y axis, while 
the magnetic field vector is directed along the z-axis 
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so that the wave direction is along the x-axis. Since the fields 
are only dependent on the x-coordinate, we have 
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where ε =ε(ω, x) and μ = μ(ω, x) are the frequency- and 
space-dependent dielectric permittivity and magnetic 
permeability, respectively. 
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Fig. 1: Propagation of a perpendicular electromagnetic wave through 
a gradient index structure 

From the equations (2) we obtain the two equations for the 
fields E(x) and H(x) 
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III. SOLUTIONS OF THE FIELD EQUATIONS 
 

The spectral properties and the gradual transition between 
the two materials is described by ε =ε(ω, x) and μ = μ(ω, x). 
The spatial dependence of these two functions can be 
expressed using various space functions, but we choose here 
the hyperbolic tangent function tanh x as the most convenient 
function, since it provides correct asymptotic values in both 
materials and allows a detailed study of the limit of the abrupt 
transition as well. We use the symmetric functions  
 

)tanh()(,)tanh()( 00 xx effeff   , (5) 
 

where  is an arbitrary parameter describing the abruptness of 
the transition from the right-handed material to the left of the 
plane x = 0 to the left-handed material to the right of the plane 
x = 0, and we assume that 
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The dispersive functions εR(ω) , (ω) and μR(ω) are the 
relative permittivity, conductivity and relative permeability of 
the media, respectively.  

The choice of the frequency dependence of these functions 
is fully arbitrary in the present analysis. One possible model is 
the Drude model, but there are no limitations in the choice of 
the model by the present approach. The impedance  
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is constant throughout the entire observed space and there is 
no reflection at the interface between the two materials. An 
example of the two functions (3) with real εeff (ω) and μeff (ω), 
is shown in Figure 2.  
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Fig. 2: Examples of the two functions μeff and εeff given by (5) for 
various values of , ranging from near-abrupt (=100) to slowly 
varying (=0.1)
 

It turns out that, in this special case, the two differential 
equations (3) and (4) allow for a remarkably simple set of two 
independent exact solutions given by 
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where E0 and H0 are the amplitudes of the electric and 
magnetic fields of the incident electromagnetic wave far to the 
left (x  - ) from the interface between the two materials, 
and 
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such that k = Re() and  = Im().  
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Fig. 3: Real part of refractive index versus frequency and distance 
across the RHM-LHM interface for a structure with both permittivity 
and permeability varying according to a hyperbolic tangent law and a 
Drude-type frequency dispersion.
 
 

The problem allows for arbitrary dispersion. Fig. 3 shows 
the dependence of the real part of the refractive index across 
the RHM-LHM interface for a structure with both 
permittivity and permeability varying according to a 
hyperbolic tangent law and a Drude-type frequency 
dispersion. 
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where 

ppmpe  ,                           (13) 

is plasma frequency and 

ppmpe    ,                          (14) 

is the damping constant describing losses in material. 

In the present problem we choose the solution with the 
minus sign in the exponent of the expressions (8), i.e. 
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For lossless media (  0) we obtain the asymptotic 
expressions for the fields E(x) and H(x) in the limits x  ± , 
as 
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From the asymptotic expressions (15) we see that to the left 
of the interface at x = 0, i.e. in the right-handed material (ε > 
0,  μ > 0), we have an electromagnetic wave with the wave 
vector  

01
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 xkk       ,                            (16) 

propagating to the right. On the other hand, to the right of the 
interface at x = 0, i.e. in the left-handed material (ε < 0,          
μ < 0), we have an electromagnetic wave with the wave vector    
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propagating to the left without reflection. 
 

 
a) 

 
b) 
 

Fig. 4: Comparison of the analytical (a) and numerical (b) results for 
the electric field 
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IV. NUMERICAL 

The comparison of the exact analytic result (15) with the 
numerical calculation using Finite Element Method (FEM) 
simulation is shown in Fig. 4.  

Figure 4 shows that there is an excellent agreement between 
the analytical calculations based on the result (15) and the 
numerical simulation using the Finite Element Method. 
Finally, Fig. 5 shows the analytical solution for electric field 
for  = 10 μm–1 and for the incident angle θ = π/6. 
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Fig. 5. Analytical solution for electric field E(x, y) at t = 0 and y = 0; 
 = 10 μm–1 and incident angle θ = π/6. 
 

V. CONCLUSION 

We have investigated electromagnetic wave propagation 
across an interface between positive and negative refractive 
index material in case when there is a symmetric gradient of 
refractive index which can be described by hyperbolic 
tangent. We derived an exact analytic result for the electric 
field intensity and compared the analytical results with the 
corresponding results obtained by the numerical simulations 
using the Finite Element Method. We have shown that there is 
an excellent agreement between the analytical results and 
numerical simulations of the wave propagation through the 
interface between the two media. The model allows for 
arbitrary dispersion and the lossy media.  
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