Wideband Dual Segment Cylindrical Dielectric Resonator Antenna Terminated in a Bio-Medium

Ravi Kumar Gangwar, S. P. Singh, D. Kumar

Abstract – In this paper, a wideband dual segment cylindrical dielectric resonator antenna (CDRA) is proposed for 5 GHz WLAN/WiMAX band. The simulation results for the radiation characteristics of the proposed antenna and the absorbed power distribution in a homogenous bio-medium (muscle layer) in direct contact with the proposed CDRA are reported at different frequencies. The specific absorption rate (SAR) distribution in muscle layer for antenna-to-bio-medium separation of 200 mm is also determined at the antenna resonant frequency of 6.238 GHz. The input characteristics of CDRA are compared with those of single segment CDRA of same size and different material dielectric constants. The simulation study has been carried out using CST Microwave Studio software.

Keywords – Dual segment CDRA, radiation characteristics, bio-medium, specific absorption rate, effective field size, penetration depth.

I. INTRODUCTION

Several investigators have focused attention on Dielectric resonator antennas (DRAs) due to their simple geometry, small size, high radiation efficiency, flexible feed arrangement, wide range of material dielectric constants, ease of excitation and easily controlled characteristics [1-5]. DRAs are available in various basic classical shapes such as rectangular, cylindrical, spherical and hemispherical geometries.

The techniques used for improving the bandwidth of DRA include changing its aspect ratio, varying the dielectric constant of the antenna material and employing multi-segments and stacked DRAs. The DRAs of lower material dielectric constant values are preferred for wideband applications. This results in week coupling. Multi-segment DRAs can be used to overcome this problem [6-7].

With the expansion of current use and anticipated further increases in the use of wireless portable devices, interest in the study of interactions between antennas and human body is growing. These activities are motivated by two factors. First one stems from the need to evaluate the performance of antennas and an another stems from the need to evaluate the performance of wireless portable devices, interest in the specific absorption rate (SAR) [8]. The human body being lossy absorbs certain amount of electromagnetic radiation generated from portable wireless device situated in its vicinity. Therefore, it is of interest to evaluate the power absorbed /specific absorption rate (SAR) distribution in the body tissues due to wireless device antenna radiating electromagnetic waves [9]. The electric field induced and hence SAR within the human body depends on several factors including the strength and frequency of the external field, the shape, size and electrical characteristics of the body tissues and the orientation of the body in relation to the external field.

In this paper, design and simulation of a wideband dual segment cylindrical dielectric resonator antenna (CDRA), which is fed by a 50 Ω coaxial probe for 5 GHz WLAN/WiMAX band, is presented. The simulated results for radiation characteristics of the proposed antenna and also the specific absorption rate (SAR) distribution in a homogenous bio-medium (muscle layer) in direct contact with the proposed antenna are reported at different frequencies. The SAR distribution in the bio-medium for antenna-to-muscle layer separation of 200 mm is also evaluated at the antenna resonant frequency. The input characteristics of the proposed CDRA are compared with those of the single segment DRA of same size and different material dielectric constants. The CST Microwave studio software was used to obtain the simulation results.

II. ANTENNA DESIGN

The dual segment CDRA consists of lower segment made from teflon sheet with dielectric constant $\varepsilon_{r1} = 2.1$ and an upper segment of glass ceramic block with $\varepsilon_{r2} = 7.735$ as shown in Fig. 1. The dual segment CDRA is placed on a ground plane of size 60×60×4 mm3. The lower and upper segments of the CDRA have dimensions of $D \times l_1 = 14.15 \times 10$ mm2 and $D \times l_2 = 14.15 \times 6$ mm2 respectively. The CDRA is assumed to be excited by a 50 Ω coaxial probe of outer radius 2 mm, and inner radius 0.65 mm. The height of the probe is determined through simulation to obtain minimum return loss at the resonant frequency of the antenna. The probe height above the surface of ground plane is found to be 9.5 mm.

The resonant frequency of single segment CDRA excited in HEM$_{11}$ mode can be written as [1], [10]

$$f = \frac{6.324 \varepsilon}{2\pi a \sqrt{2 + \varepsilon_r}} \left[0.27 + 0.36 \frac{a}{2h} + 0.02 \left(\frac{a}{2h} \right)^2 \right]$$

(1)
where \(a = \frac{D}{2} \), \(D \) is the diameter of CDRA, \(h \) is the height of the CDRA above ground plane, \(c \) is the velocity of microwave in free space \((=3\times10^8 \text{m/sec}) \) and \(\varepsilon_r \) is the relative permittivity of CDRA material.

\[
Q = 0.01007\left(\varepsilon_r\right)^{-1.3}\left(\frac{a}{h}\right)\left[1 + 100e^{-2.65\left(\frac{a}{2h}\right) - \frac{1}{90\left(\frac{a}{h}\right)^2}}\right]
\]

Equation (1) has been obtained through curve fitting and numerical simulations based on the method of moments [1] and [11].

Radiation Q-factor of the isolated cylindrical DRA can be written as [1], [10]

\[
Q = 0.01007\left(\varepsilon_r\right)^{-1.3}\left(\frac{a}{h}\right)\left[1 + 100e^{-2.65\left(\frac{a}{2h}\right) - \frac{1}{90\left(\frac{a}{h}\right)^2}}\right]
\]

The percentage bandwidth of the isolated CDRA is given by [1], [10].

\[
\%\text{BW} = \frac{S-1}{\sqrt{SQ}} \times 100
\]

where \(S \) and \(Q \) are the VSWR and radiation Q-factor of the isolated CDRA.

Equations (1)-(3) can be used to compute the resonant frequency, radiation Q-factor and bandwidth of the dual segment CDRA by replacing CDRA material dielectric constant, \(\varepsilon_r \) and height \(h \) with their modified values termed as \(\varepsilon_{\text{eff}} \) and \(h_{\text{eff}} \) respectively. Adopting a simple static capacitance model, the following expression for \(\varepsilon_{\text{eff}} \) and \(h_{\text{eff}} \) are obtained:

\[
\varepsilon_{\text{eff}} = \frac{h_{\text{eff}}}{\varepsilon_1 + \frac{1}{\varepsilon_{\text{eff}}}}, \quad \text{and} \quad h_{\text{eff}} = l + l_1 \quad [6], [12]
\]

where \(l \) and \(l_1 \) are the length of lower and upper segments of CDRA respectively.

The resonant frequency, Q-factor and bandwidth of the dual segment CDRA computed using equations (1), (2) and (3) are found to be 6.225 GHz, 1.6644 and 42.4842% respectively.

\[
\varepsilon_{\text{eff}} = \frac{h_{\text{eff}}}{\varepsilon_1 + \frac{1}{\varepsilon_{\text{eff}}}}, \quad \text{and} \quad h_{\text{eff}} = l + l_1 \quad [6], [12]
\]

where \(l \) and \(l_1 \) are the length of lower and upper segments of CDRA respectively.

\[
\%\text{BW} = \frac{S-1}{\sqrt{SQ}} \times 100
\]

A. Return loss and Input Impedance Characteristics

The simulation study of return loss and input impedance versus frequency characteristics of the proposed probe excited dual segment CDRA has been carried out using CST Microwave Studio software. The simulated return loss and input impedance versus frequency curves of the proposed antenna have been presented respectively in Figs. 2 and 3. From Fig. 2 the resonant frequency, operating frequency range and the percentage bandwidth of the CDRA are extracted and the results are shown in Table 1. The theoretical values of resonant frequency and the percentage bandwidth of the dual segment CDRA computed using equations (1) and (3) are in good agreement with simulated values.

From Fig. 2 and Table 1, it can be seen that the proposed CDRA provides wide bandwidth and covers 5 GHz WLAN/WiMAX band.

It is worth mentioning that the input resistance at resonant frequency of the proposed CDRA is found to be 51.54 \(\Omega \) providing very good impedance match to 50 \(\Omega \) coaxial feeder. From Fig. 3 it can be observed that the frequency at which total reactance of the structure is zero does not coincide with maximum-resistance frequency. This might have happened due to finite reactance offered by the coaxial probe feed.

Fig. 4 shows the return loss versus frequency characteristics for different lengths of the upper segment keeping total antenna height constant at 16 mm. From Fig. 4 it can be seen that the bandwidth of the antenna increases with the upper segment length. This occurs due to the fact that, the dominance of electric field in the lower segment having lower dielectric constant value increases with upper segment length. Therefore, effective surface area-to-volume ratio of the antenna increases with upper segment length which reduces the Q-factor and increases the antenna bandwidth.
It can be also noted from Fig. 4 that the resonant frequency of the antenna first decreases and then increases with upper segment length. The trend of variation in resonant frequency of the antenna with upper segment length can be explained on the ground similar to that said earlier i.e. electric field strength in the lower segment having lower dielectric constant value increases with upper segment length but the rate of change of electric field strength (in lower segment) with upper segment length becomes significant in later phases, though it is negligible in initial phase. Therefore, as upper segment length is increased, this segment dominates in initial phase to provide higher antenna effective volume and hence lower resonant frequency. But in later phases, lower segment having lower \(\varepsilon_r \) value dominates due to prominence of electric field in this region, thereby reducing antenna effective volume and increasing its resonant frequency.

A1. Performance comparison of single and dual segment CDRA

The return loss and input impedance characteristics of single segment DRAs of same size as the dual segment CDRA are also obtained through simulation. The first single segment DRA has material dielectric constant of 2.1, whereas the second one has material dielectric constant of 7.735. The simulated values of return loss and input impedance versus frequency for single segment CDRA is shown in Figs. 2 and 3 respectively along with the corresponding characteristics for dual segment CDRA. The return loss parameters for single segment CDRA are extracted from Fig. 2 and the results are provided in Table 1.

From Fig. 2 and Table 1, it can be observed that dual segment CDRA provides wider bandwidth in comparison to single segment DRAs with different material dielectric constants. Also, the values of resonant frequency and bandwidth of single segment CDRA having material \(\varepsilon_r \) value of 2.1 are higher as compared with the antenna with material \(\varepsilon_r \) value of 7.735. The trend of variation in resonant frequency can be explained on the basis of change in effective volume with increase in material dielectric constant. The effective antenna volume increases with material \(\varepsilon_r \) value of the antenna and hence resonant frequency reduces with increase in \(\varepsilon_r \) value. The increase in bandwidth may be due to increase in effective surface area-to-volume-ratio of the antenna with reduction in material \(\varepsilon_r \) of the antenna which increases the loss due to radiation from the antenna thereby reducing its radiation Q-factor.

From Fig. 3 it can be seen that the value of input resistance at resonant frequency of the single segment CDRA is also

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Dual Segment CDRA</th>
<th>DR1 ((\varepsilon_r = 2.1))</th>
<th>DR2 ((\varepsilon_r = 7.735))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resonant frequency in GHz</td>
<td>6.238</td>
<td>7.732</td>
<td>5.02</td>
</tr>
<tr>
<td>Operating frequency range in GHz (</td>
<td></td>
<td>5.182 - 8.836</td>
<td>6.885 - 9.952</td>
</tr>
<tr>
<td>Return loss bandwidth in %</td>
<td>58.576 %</td>
<td>39.66 %</td>
<td>26.89 %</td>
</tr>
</tbody>
</table>
in good impedance match with 50 Ω coaxial feeder. The frequency at which total reactance of each single segment CDRA is zero does not coincide with maximum-resistance frequency due to the reason identical to that given in paragraph 3 of Section III-A.

B. Near Field Distribution

The simulation study of electric field distribution in the proposed dual segment wideband CDRA has been carried out at the resonant frequency of 6.238 GHz. When proposed antenna is excited using a 50 Ω coaxial probe as shown in Fig. 1, the electric field distribution in x-z plane looks like that shown in Fig. 5. It is apparent from Fig. 5 that the coaxial probe excites dominant mode field in the structure.

The simulated values of directivity, gain and total efficiency of the antenna at different frequencies are also given in Table 2.

From Table 2 it can be observed that the 3 dB angular widths of the proposed antenna in both X-Z and Y-Z planes decrease with increasing frequency. It is also noted from Table 2 that the values of gain and directivity of the antenna increase with frequency, while total efficiency first increases, reaches the maximum at the resonant frequency and then goes down. The gain and directivity of the antenna are found to match the characteristics of wideband antenna used for WLAN and WiMAX applications [13-14].
D. SAR Evaluation

The specific absorption rate (SAR) is defined as the amount of power absorbed per unit mass of the tissue. The origin of coordinate system was selected on the top surface of ground plane coinciding with the central line of dual segment CDRA as shown in Fig. 7 for simulation of SAR distribution. The power fed to the antenna was initially assumed to be 0.2 W. The simulated SAR (10g) distributions in the muscle layer of size 10×10×12 cm³ in direct contact with the proposed antenna of original dimensions along X, Y and Z directions at the resonant frequency of 6.238 GHz and at other frequencies 5.2 GHz (low & mild U-NII band 5.15-5.35 GHz), 5.5 GHz (WRC band 5.47-5.725 GHz), 5.8 GHz (upper U-NII/ISM band 5.725-5.85 GHz) and 6.6 GHz are shown in Fig. 8. The simulation of SAR distribution in a homogenous bio-medium, for antenna-to-bio-medium separation of 200 mm was also carried out at the antenna resonant frequency of 6.238 GHz assuming input power of 0.2 W and the results are shown in Fig. 9. The mass density of muscle layer available in the literature is 1050 Kg/m³[15]. The complex permittivity, electrical conductivity and loss tangent values of muscle layer compiled from the available literature [16] at different frequencies are shown in Table 3.

The three parameters of importance for obtaining the amount of power absorbed and the volume of the tissue absorbing significant amount of power are SAR, effective field size (EFS) and penetration depth. The EFS is defined as the area that is enclosed within the 50% SAR contour inside the tissue. The EFS provides the resolution of the antenna in transverse directions. The penetration depth is the depth at which SAR becomes $1/e^2$ of its value at the surface [15].

The maximum SAR (10g), EFS and penetration depth in the bio-medium due to the dual segment RDRA extracted from Fig. 8 are shown in Table 4. The effect of change in power fed to the antenna on SAR distribution in the bio-medium has also been studied by reducing the power from 0.2 W to 0.02 W. Table 4 also shows maximum value of SAR (10g) in the bio-medium due to the antenna with input power of 0.02 W.

From Table 4 it can be observed that maximum value of SAR (10g) increases with frequency. The EFS value decreases with increase in frequency. The penetration depth value reduces with increase in frequency. The trend of changes in EFS value and penetration depth in muscle may be due to increase in the conductivity of the bio-medium with frequency and frequency dependent characteristics of the antenna. It is also noted from Table 4 that maximum value of SAR (10g) in muscle layer reduces in proportion to decrease in power fed to the antenna, but other parameters (EFS and penetration depth) remain unchanged.

From Fig. 9 it can be observed that the SAR (10g) distribution covers larger cross-sectional area (though at reduced strength) with greater antenna-to-bio-medium separation due to more beam spread. From this figure the penetration depth for antenna-to-bio-medium separation (d) of 200 mm is found to be 58.58 mm.

It is noted that penetration depth at larger antenna-to-muscle layer separation is higher. This has happened due to better coherency among the waves before entering the bio-medium at greater separation.
IV. CONCLUSION

A wideband dual segment cylindrical DRA for 5 GHz WLAN/WiMAX band has been proposed in this paper. The radiation characteristics of the proposed antenna and SAR distributions in a homogenous muscle layer in direct contact with the antenna have been evaluated at different
WLAN/WiMAX frequencies through simulation studies using CST Microwave Studio software. The SAR distribution in muscle layer for antenna-to-muscle layer separation of 200 mm has also been determined through simulation at the antenna resonant frequency. The input characteristics of the proposed antenna have also been compared with single segment DRA of same size as the proposed antenna. From the study it is inferred that the bandwidth of the proposed antenna is found to be 58.576%, which covers 5 GHz WLAN/WiMAX band and is much greater than single segment antenna bandwidth. The gain and total efficiency of the proposed antenna remains above 6.5 dB and 90% respectively throughout WLAN/WiMAX band. The value of SAR in the bio-layer increases with frequency. Also, reduction in penetration depth and improvement in transverse plane resolution have been noticed with increase in frequency. The value of SAR (10g) reduces when antenna input power is lowered whereas the resolutions of the antenna along X, Y and Z directions are not affected by change in input power. The results presented here may find potential application in wireless communication field for designing a wideband antenna and evaluating the power absorption in bio-layers due to the antenna.

TABLE 2

<table>
<thead>
<tr>
<th>Far field parameters</th>
<th>At 5.2 GHz</th>
<th>At 5.5 GHz</th>
<th>At 5.8 GHz</th>
<th>At 6.238 GHz</th>
<th>At 6.6 GHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Directivity in dBi</td>
<td>6.708</td>
<td>6.985</td>
<td>7.258</td>
<td>7.701</td>
<td>8.141</td>
</tr>
<tr>
<td>Total efficiency in %</td>
<td>90.04</td>
<td>95.75</td>
<td>98.23</td>
<td>99.16</td>
<td>98.51</td>
</tr>
<tr>
<td>3-dB Beam-width in deg.</td>
<td>(Y-Z plane)</td>
<td>31.2</td>
<td>29.5</td>
<td>28.1</td>
<td>25.8</td>
</tr>
<tr>
<td>(X-Z plane)</td>
<td>203.8</td>
<td>192.8</td>
<td>184.4</td>
<td>168.1</td>
<td>152.1</td>
</tr>
<tr>
<td>Side lobe level in dB</td>
<td>(Y-Z plane)</td>
<td>-3.0</td>
<td>-4.4</td>
<td>-4.4</td>
<td>-4.0</td>
</tr>
<tr>
<td>(X-Z plane)</td>
<td>-3.3</td>
<td>-4.5</td>
<td>No side lobe</td>
<td>-6.6</td>
<td>-6.4</td>
</tr>
</tbody>
</table>

TABLE 3

<table>
<thead>
<tr>
<th>Parameters</th>
<th>At 5.2 GHz</th>
<th>At 5.5 GHz</th>
<th>At 5.8 GHz</th>
<th>At 6.238 GHz</th>
<th>At 6.6 GHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dielectric Constant</td>
<td>49.278</td>
<td>48.883</td>
<td>48.485</td>
<td>47.898</td>
<td>47.409</td>
</tr>
<tr>
<td>Electrical Conductivity (S/m)</td>
<td>4.2669</td>
<td>4.609</td>
<td>4.915</td>
<td>5.4931</td>
<td>5.9465</td>
</tr>
<tr>
<td>Loss Tangent</td>
<td>0.29932</td>
<td>0.30815</td>
<td>0.31715</td>
<td>0.33048</td>
<td>0.34162</td>
</tr>
</tbody>
</table>

TABLE 4

<table>
<thead>
<tr>
<th>Parameters</th>
<th>At 5.2 GHz</th>
<th>At 5.5 GHz</th>
<th>At 5.8 GHz</th>
<th>At 6.238 GHz</th>
<th>At 6.6 GHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum SAR (10g)</td>
<td>2.28017 W/Kg</td>
<td>2.5492 W/Kg</td>
<td>3.79065 W/Kg</td>
<td>4.44155 W/Kg</td>
<td>4.71106 W/Kg</td>
</tr>
<tr>
<td>Effective Field Size</td>
<td>25.56×28.36 mm²</td>
<td>24.75×26.42 mm²</td>
<td>21.6×24.76 mm²</td>
<td>22.24×23.30 mm²</td>
<td>22.98×22.73 mm²</td>
</tr>
<tr>
<td>Penetration Depth</td>
<td>18.3 mm</td>
<td>18.29 mm</td>
<td>17.8 mm</td>
<td>17.1 mm</td>
<td>16.59 mm</td>
</tr>
</tbody>
</table>
ACKNOWLEDGEMENT

First author, Ravi Kumar Gangwar wishes to acknowledge to the Department of Electronics Engineering, IT-BHU, Varanasi and UGC, New Delhi for awarding Senior Research Fellowship. Authors wish to thank the editorial board and reviewers for their invaluable suggestions to improve the quality of the paper.

REFERENCES

