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Abstract - The representation of electromagnetic

structures by lumped element circuits is revisited. Net-

work models can be established by a subsequent ap-

plication of system identification and circuit synthesis

methods to data obtained by numerical simulation or

from measurement. Network models provide a com-

pact description of electromagnetic structures and can

contribute significantly to the formulation of electro-

magnetic field problems and their efficient solution. On

the field level network methods are introduced by seg-

mentation of the electromagnetic structures and appli-

cation of the field form of Tellegen’s theorem. Methods

for synthesis of lumped element models for lossless as

well as lossy linear reciprocal multiports and for ra-

diating structures are discussed. The state equation

method as a general framework for lumped element

network description is presented. Discrete time repre-

sentations on the basis of Richards transformation and

wave digital filter formulation are introduced.

I. Introduction

The design of modern high-speed analog and digital elec-
tronics makes use of distributed passive circuit struc-
tures. The modeling of distributed circuits requires full-
wave electromagnetic analysis. Usually the whole circuitry
contains lumped as well as distributed subcircuits con-
nected via interconnects or transmission lines such that
each interconnect or connecting transmission line carries
a single transverse mode only. This allows the segmen-
tation of the circuits by cutting through the connecting
transmission lines. The circuit segments obtained in this
way, exhibiting a number of n open transmission lines
each of them carrying a single transverse mode only in
the considered frequency band, is called a multiport or
n-port, respectively [1]. Whereas lumped element multi-
ports can be treated by methods of network theory [2]
distributed circuits require electromagnetic full-wave mod-
eling [1, p. 413].

According to Guillemin [3, p. 73] we are concerned with
three things in network theory: an excitation, a response
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and a network. When any two of them are known the third
can be determined. The transfer function is defined as the
ratio of response spectrum to excitation spectrum. When
the network is given we can either compute the response
from the excitation or the required excitation from the
known response. In both of these cases we have an analy-
sis problem. The third problem, i.e. to determine the net-
work yielding a given response for a given excitation, is the
synthesis problem. This problem will have solutions only
if it is well-posed. If the synthesis problem can be solved
it usually has various solutions, some of them are canoni-
cal. Furthermore the solution will depend on the frequency
band in which the synthesized network should exhibit the
required transfer function, and the tolerated error of the
solution.

Distributed circuits can be modeled with arbitrary ac-
curacy using lumped element network models. A general
way to establish network models is based on modal anal-
ysis and similar techniques [4].

Since distributed circuits can be modeled in principle
by lumped element equivalent circuits this raises the issue
to apply lumped element synthesis methods to realize the
transfer function of a distributed circuit. In general, the
exact solution of this problem would yield a lumped ele-
ment equivalent circuit with an infinite number of circuit
elements. However, if the transfer function of the lumped
element equivalent circuit needs to approximate the trans-
fer function of the given distributed circuit only within
a certain frequency range and also there only within a
certain accuracy margin in many cases a lumped element
equivalent circuit with a quite limited number of circuit
elements can be found. Lumped element models provide a
compact description of the distributed circuits. Especially
when modeling complex circuits containing also nonlinear
and active lumped elements it is advantageous to describe
the distributed circuit parts by lumped element models.
The whole circuit then can be modeled with a lumped el-
ement circuit simulator which is much more efficient than
field oriented simulation.

The system identification (SI) of microwave structures
and subsequent lumped element model synthesis can be
performed by full-wave simulation or measuring of the in-
put and output signals of the device in time or in fre-
quency domain [5–16]. To establish the network model of
a distributed circuit we may apply a three-step procedure:

1. Computation of the transfer functions by numerical
electromagnetic full-wave analysis,

2. Determination of the rational functions representing
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the transfer functions by system identification or vec-
tor fitting methods,

3. Synthesis of a lumped element equivalent circuit real-
izing the transfer function.

The simulation or the measurement data can be repre-
sented as a table of generalized voltages and currents
or incident and reflected waves in time or frequency do-
main [16–20]. High-Q resonant microwave circuits exhibit
long impulse response times and therefore require a long
simulation time. Application of SI allows constructing a
lumped element model using a short sequence of the sim-
ulated response. As soon as the model parameters can be
estimated with sufficient accuracy, the numerical simula-
tion process can be terminated.

Furthermore, network oriented modeling can also be ap-
plied at the field level. In network theory lumped element
circuits are separated into the circuit elements and the
connection circuit containing only connections and ideal
transformers. This methodology can also be applied to
electromagnetic structures. We can divide the electromag-
netic structure into substructures separated by boundary
surfaces. The segmentation of the problem in subdomains
establishes substructures which define the pertinent cir-
cuit elements and boundary surfaces between the substruc-
tures. Lossless structures in these subdomains can be rep-
resented by canonical Foster equivalent circuits. Descrip-
tion of radiation modes is provided by canonical Cauer
networks. Analytic methods, e.g. Green’s function or mode
matching approaches, or numerical methods in connection
with system identification techniques allow the synthesis
of lumped element models. By this way electromagnetic
field problems can be solved by means of network meth-
ods which provide for a systematic framework to formulate
the problem and facilitate the development of efficient so-
lution methodologies [1, 4, 21–27].

Electromagnetic structures can be modeled efficiently in
the time-domain using a time-discrete transmission line

segment circuit (TLSC) algorithm upon time discretiza-
tion using Richards transformation [28]. A special case of
the TLSC scheme is the scheme of the Transmission Line
Matrix (TLM) method [1, 4, 29, 30]. It can be easily in-
corporated into the TLSC scheme yielding a powerful hy-
brid method. Furthermore, we discuss the application of
wave digital filter (WDF) methods [31,32] for time-discrete
modeling and their relation to TLSC and TLM schemes.

This paper is organized as follows: In Section II. we
discuss the state equation description as a general frame-
work for the lumped element representation of circuits.
Section III. deals with the system identification method in
frequency or time domain that allows to extract the ratio-
nal function description of transfer functions obtained nu-
merically from simulation or measurement. In Section IV.
the connection circuit and Tellegen’s theorem are discussed
for electromagnetic structures. It is shown that in a seg-
mented electromagnetic structure the subdomains repre-
sent the circuit elements and the complete set of boundary

surfaces defines the connection circuit. In Section V. the
Foster equivalent circuit realizations for reciprocal linear
lossless multiports is presented and in Section VI. it is out-
lined how lumped element equivalent circuits could be syn-
thesized for reciprocal linear lossy multiports. Section VII.
presents the Cauer lumped element equivalent circuits for
radiating modes. In Section VIII. the discrete time state
equation representation is introduced which gives a gen-
eral framework for the discrete time solution of electro-
magnetic circuits. In Section IX. it is shown that the dis-
crete time state equation representation of electromagnetic
structures is equivalent to the wave digital filter (WDF)
representation. WDF theory provides a powerful theoret-
ical framework for the treatment of time-discrete network
models.

II. State Equation Representation

The lumped element equivalent circuit for electromagnetic
structures can be also described by the state equations.
The appropriate description in time-domain is given by a
system of first order ordinary differential equations [2, 33]

dx(t)

dt
= Ax(t) +Bu(t) , (1a)

w(t) = Cx(t) +Du(t) , (1b)

where the n-dimensional vector x(t) summarizes the state
variables, u(t) is the input m-dimensional vector, W (t)
is the output p-dimensional vector, A is called the system
n×n matrix, B the input n×m matrix, and C the output
p×n matrix [33]. The p×m matrix D is the transmission
matrix which occurs only if there is a direct connection
between input and output variables [34]. In the Laplace
domain the state equations are given by

sX(s) = AX(s) +BU(s) , (2a)

W (s) = CX(s) +DU(s) . (2b)

Let P be an n-th order nonsingular square matrix which
diagonalizes the system matrix A, then

P
−1

AP = L =











s1 0 . . . 0
0 s2 . . . 0
...

...
. . .

...
0 0 . . . sn











, (3)

where si, i = 1, . . . , n are the distinct poles of the dynam-
ical system. The matrix P can be used for the transfor-
mation of the system (2) to the normal form

sV (s) = LV (s) +GU(s) , (4a)

W (s) = HV (s) +DU(s) , (4b)

where X(s) = PV (s), G = P−1B is a normal form input
matrix, and H = CP is a normal form output matrix.

The dynamical system is stable if R{si} < 0 for all i.
The rank ru of the input matrix is the effective number
of inputs which can influence the state vector. The rank
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rw of the output matrix defines the effective number of
outputs available for observing the state of the system. It
is possible without loss of generality to reduce the number
of ineffectual inputs and outputs of the system.

A dynamical system is controllable if the normal form
input matrix G exhibits no row where all elements are
zero [34, 35]. The state variables Vi(s) corresponding to
rows of G containing only zeros are called uncontrollable.
The evolution of the state of an uncontrollable system de-
pends only on the initial conditions and not on the input
signal u(s).

A dynamical system is observable if the normal form out-
put matrix H has no columns which contain only zeros.
The state variables Vj(s) corresponding to columns of H
exhibiting only zeros are called unobservable. These state
variables cannot be detected in the output signal W (s).
Thus a system which is unobservable has dynamic modes
of behavior which cannot be ascertained from measure-
ment of the output variables W (s).

The admittance p×m matrix Y (s) of the linear dynam-
ical system is the ’black-box’ input-output representation
of the observable and controllable part of the system for
zero initial conditions

W (s) = Y (s)U(s) , (5)

This matrix can be obtained from the state equations (2)
and (4) by the following relation [35]. Substituting (2) and
(4) into (5) we will obtain

CX(s) +DU(s) = Y (s)U(s) , (6a)

C(s1−A)−1
BU(s) +DU(s) = Y (s)U(s) , (6b)

Y (s) = C(s1−A)−1
B +D

= H(s1−L)−1
G+D =

n
∑

i=1

Ki

s− pi
+D , (6c)

where 1 is a unitary matrix.
If the admittance matrix Y (s) of the microwave system

is given by measurements or numerical simulation, it is
generally impossible to derive the corresponding differen-
tial equation representation. This is because the state vari-
able choice is not unique and all information concerning
the ’invisible’ part of the system is missing. It is possible,
however, to find a set of state equations (2) or (4) which
yield the prescribed Y (s).

The partial expansion of the admittance matrix Y (s)
whose elements are rational functions, can be given as

Y (s) =

n
∑

i=1

Ki

s− si
+D , (7)

where Ki are the residue matrices

Ki = lim
s→si

(s− si)Z(s) , (8)

D = lim
s→∞

Z(s) . (9)

The rank of the i-th pole is defined as the rank of the corre-
sponding matrix Ki with frequency independent constant
coefficients.

III. System Identification

The SI procedure in the frequency domain starts from the
approximation of the obtained discrete data by complex
frequency rational functions describing the model of the
microwave structure. The vector fitting (VF) method orig-
inally introduced in [36] provides a least mean-square ap-
proximation of the sampled data in frequency domain by
rational fractions with a minimum possible order in the
form

Y (s) = Es+D +
K
∑

k=1

Bk

s− sk
, (10)

where E and D are constant coefficients, sk are the poles
and Bk are their residues. The internal procedure for the
approximation is an iterative procedure of relocating the
positions of poles sk in the complex s-plane. The model or-
der K should be predefined in advance so the method will
try to find such positions of K poles that give a minimum
deviation between the given samples and the modeled one.
The VF method was significantly improved in [37] by in-
creasing the number of degrees of freedom that led to its
relaxed modification.

One of the disadvantages inherent to the VF method
is a possibility to obtain an unrealizable system function
as a result of the fitting procedure. It means that a good
fitting in the mean square error sense does not guarantee
the realizability of the lumped element network.

Time domain SI procedure assumes the splitting of the
model of the passive microwave circuit into two parts: the
dynamic linear system and the delay lines linear system.
This splitting corresponds to the scattering model rep-
resented in [38] and is known as a singularity expansion
method [39,40]. The boundary between the late-time part
where the scattered field is described only by the dynamic
system and the early-time part where both systems con-
tribute is called the late-time border. This allows distin-
guishing the time interval where the SI procedure gives
only parameters of the exponentially decaying sinusoids
describing the impulse response of the dynamical part of
the model

hLT (t) =

N
∑

n=1

Cn exp{snt} . (11)

The early-time part of the impulse response can be deter-
mined by the subtraction of the obtained late-time part
hLT (t) convolved with the input waveform a(t), from the
output waveform b(t) of the whole microwave system

bET (t) = b(t)−bLT = b(t)−hLT ⋆ a(t) =
M
∑

m=1

Bka(t−Tm) ,

(12)
where a(t − Tm) is the partial delayed input waveform
in the predefined frequency band [41]. As a result of the
full-wave numerical simulation or measurements in time
domain the discrete time domain waveform can be repre-
sented by its M samples expressed through the discrete

4



July, 2010 Microwave Review

convolution as follows

b[n] = h[n] ⋆ a[n] =

M−1
∑

m=0

h[m] ⋆ a[n−m]

=

M−1
∑

m=0

a[m] ⋆ h[n−m] , (13)

It also can be written in the matrix form











b0
b1
...

bM−1











=













a0 0 . . . 0

a1 a0
. . .

...
...

...
. . . 0

aM−1 aM−2 . . . a0























h0

h1

...
hM−1











(14)
or more compactly

b = Ah . (15)

To solve the equation (15) the inversion of the matrix can
be used

h = A
−1

b , (16)

but this way leads to an ill-conditioned problem because
the determinant of the initial matrix A could be very close
to zero and even small errors could result in significant in-
accuracy of the calculated impulse response h. This incon-
venience can be solved by using the Moore-Penrose pseudo
inversion of the matrix A

A
+ = (AH

A)−1
A

H , (17)

where AH is the Hermitian conjugated matrix. So the im-
pulse response of the microwave system under investiga-
tion can be obtained by

h = A
+
b . (18)

Another efficient procedure for the deconvolution problem
is a singular value decomposition of the initial matrix A

for the defined number of the largest singular values λn,
n = 1, . . . D

AD =
D
∑

n=1

√

λnunv
H
n = UDΣDV

H
D , (19)

where UD, ΣD, VD are the truncated matrices of the stan-
dard singular value decomposition of the initial matrix
A = UΣV H , and the matrices UD and VD are composed
from the defined left-handed and right-handed eigenvec-
tors un and vn correspondingly. ΣD is a diagonal matrix
comprised of the singular values corresponding to the de-
fined eigenvectors. Than the pseudo inversion of the matrix
(19) can be expressed by

A
+
D = VDΣ

−1
D U

H
D (20)

and the impulse response of the microwave system is

h = VDΣ
−1
D U

H
D b , (21)

Prony Yij(z) =
p
∑

r=1

vr

1−zrz
−1

AR Yij(z) =
1

1+
p∑

r=1

crz
−r

ARMA Yij(z) =
1+

d∑

k=1

akz
−k

1+
q∑

l=1

blz−l

Table 1: Approximations for the Elements of the Admit-
tance Matrix.

where Σ
−1
D is a diagonal matrix

Σ
−1
D = diag

[

1

λ1
,
1

λ2
, . . . ,

1

λD

]

. (22)

The most popular pole extraction method for time do-
main signals is the Matrix Pencil Method [42] which is a
modification of the well known Prony’s method [43]. This
method provides the approximation of the time domain
signal by the predefined number of exponentially damped
sinusoids as in (11). The number of poles to be chosen
depends on the specified limit for the mean square ap-
proximation error.

The definition of the output response late-time border
can be obtained by the application of the stability criterion
introduced in [44]. The realization of the stability criterion
needs a specific tool which allows evaluating the closeness
of one pole set to another one. One of the possible choices
is the distance between the signatures of the pole sets in
the normalized multidimensional space [45].

In the following the z-domain transfer function H̃(z)
represents a matrix element of the z-domain impedance
matrix Z̃(z) or admittance matrix Ỹ (z), respectively.

Applying the singularity expansion method [39,40], one
can express the electromagnetic system response function
H̃(z) in the form

H̃(z) = H̃ ′(z) + H̃ ′′(z) =

N
∑

n=1

Am(z)

z − zm
+ H̃ ′′(z) , (23)

where H̃ ′(z) and H̃ ′′(z) denote the transient and driven
parts, respectively, of the system response. H̃ ′′(z) is formed
when the excitation wavefront is interacting with the sys-
tem. Rational function approximations for the elements
Ỹij(z) of a multiport admittance matrix Ỹ(z) relating

the output currents Ĩi(z) to the input voltages Ṽj(z)
by Prony’s, AR and ARMA methods, respectively, are
listed in Table 1 [43]. TLM modeling and SI of dis-
tributed microwave circuits and antennas is presented
in [16–20,41,45]. System identification has been combined
with model order reduction for TLM analysis in [46].

IV. The Connection Circuit

In an electromagnetic structure subdivided into subdo-
mains the electric and magnetic fields E(x, t) and H(x, t)
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fulfill the field form of Tellegen’s theorem [1,47],

∮

∂V

E ′(x, t′) ∧H′′(x, t′′) = 0 , (24)

where the integration is performed over both sides of every
boundary surface. Different time, and also different mate-
rial fill of the subdomains are indicated by ’ and ”.

Expanding the transverse fields Et(x, t) and Ht((x, t),
on both sides α and β of all boundary surfaces into 2M
biorthonormal basis differential forms e

ξ
m and h

ξ
m, respec-

tively, with ξ = α, β yields

Et =

M
∑

m

∑

ξ=α,β

V ξ
me

ξ
m , Ht =

N
∑

m

∑

ξ=α,β

Iξmh
ξ
m , (25)

where the expansion coefficients V ξ
m and Iξm may be con-

sidered as generalized voltages and currents, respectively.
We summarize the generalized voltages and currents into

V
α(t) = [V α

1 (t), V α
2 (t), . . . V α

M (t)]
T
, (26a)

V
β(t) =

[

V β
1 (t), V β

2 (t), . . . V β
M (t)

]T

, (26b)

I
α(t) = [Iα1 (t), I

α
2 (t), . . . I

α
M (t)]

T
, (26c)

I
β(t) =

[

Iβ1 (t), I
β
2 (t), . . . I

β
M (t)

]T

, (26d)

and define V = [V α V β]T and I = [Iα Iβ]T .

Inserting (25) to (26d) into (24) and applying the
method of moments [1, 4] yields the general network form
of Tellegen’s theorem

V
′T (t′) I ′′(t′′) = 0 , (27)

where the vectors V ′(t′) and I ′′(t′′) summarize all voltages
and currents on all surfaces [47,48]. The superscripts ’ and
” denote that V ′(t′) and I ′′(t′′) may be taken at different
times and also for different material fills of the subregions.

In wave amplitude representation Tellegen’s Theorem is
given by [49–51]

a
′T (t′) b′′(t′′) = b

′T (t′)a′′(t′′) , (28a)

a
′T (t′)a′′(t′′) = b

′T (t′) b′′(t′′) , (28b)

where the vectors a(t) and b(t), respectively, summarize
the wave amplitudes incident into and scattered from the
connection network. The connection network exhibits the
interconnect structure and ideal transformers. Its scatter-
ing matrix Γ is symmetric, real, Hermitian, unitary and
orthogonal,

Γ = Γ
T = Γ

∗ = Γ
† = Γ

−1 ; (29)

and exhibits the eigenvalues ±1 only [52].

For a specific segmentation of the electromagnetic struc-
ture a connection network of the canonical form shown in
Figure 1 is obtained, where the nij are the turns ratios

Figure 1: Canonical Form of the Connection Network.

Figure 2: Representation of the canonical connection net-
work.

of the ideal transformers. The voltages and currents are
related by

[

−nT
1 0 0

0 0 1 n

] [

V ξ

Iξ

]

= 0 , (30)

where ξ = α, β, the matrix

n =











n11 n12 . . . n1M

n21 n22 . . . n2M

...
...

. . .
...

nM1 nM1 . . . nMM











, (31)

summarizes the turns ratios of the M2 transformers, and
1 is the M ×M diagonal unit matrix.

The transformer network can be also represented by two
matrix equations

V
β = n

T
V

α , (32a)

(Iα)T + nI
β = 0 , (32b)

where V α is the input terminal voltages vector, V β is the
output terminal voltages vector, Iα is the input terminal
currents vector, Iβ is the output terminal currents vector.
The black box representation of the 2M -port connection
network defined by (32) is shown in the Figure 2.

A Gyrator [1, 53] satisfies (29) and should be consid-
ered as part of the connection circuit. Distributed gyrator
surfaces have been discussed in [54].

The complete transmission line segment circuit (TLSC)
can be divided into a connection circuit consisting only of
interconnects and ideal transformers, open stubs, shorted
stubs, reflection free terminations and sources exciting
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Connection
Circuit

Γ

1

−1

0

Cm

Ln

Rl

Sources

a0
a

b

Figure 3: The TLSC Scheme

the circuit. Figure 3 shows the a schematic representa-
tion of the TLSC. The connection circuit is described by
the scattering matrix Γ with eigenvalues ±1 [52]. All ca-
pacitors are represented by open stubs and all inductors
by shorted stubs formed by transmission line segments of
length ∆l = τ/2c with equal characteristic impedance Z0.
This means no restriction, since we can include ideal trans-
formers into the connection circuit to fulfill this condition.
In z-domain the scattering matrix representing the stubs
and the matched terminations exhibits the diagonal form

S̃(z) = z
−1

S with S = diag [1,−1,0] , (33)

where the diagonal submatrices 1, −1 and 0 of dimension
M × M , N × N , and L × L, respectively represent M
open stubs, N shorted stubs, and L matched terminations.
Using the notation of [1] for the vector ˜|a〉 summarizing

all wave pulses incident in S, and ˜|b〉 for the wave pulses

scattered from S, ˜|a〉s for the wave pulses exciting the

structure, and ˜|b〉r for the port responses we obtain the
TLSC scheme represented by

˜|b〉 = z
−1

S ˜|a〉 , (34a)

˜|a〉 = [Γ0,Γs]

[

˜|b〉
˜|a〉s

]

, (34b)

˜|b〉r = ΓQ
˜|a〉 , (34c)

where the connection matrix Γ has been split into the parts
Γ0 and Γs, and ΓQ is the output matrix. This is formally
identical with the transmission line matrix (TLM) scheme
[1,4, 27].

From (34a) to (34c) we obtain the response function

H̃ = ΓQ(zI − Γ0 S)
−1

ΓR =

∞
∑

k=1

z
−k

ΓQ (Γ0S)
k−1

ΓR

(35)
relating the port response vector to the excitation vector:

˜|a〉r = H̃ ˜|a〉s . (36)

V. Lumped Element Equivalent Circuits for

Reactance Multiports

The network oriented modeling assumes the realization of
the obtained scattering matrix of the dynamic part of the
model by the lumped elements multiport containing ideal
transformer connection network and the lossy reactance

Figure 4: Partitioning of an electromagnetic structure.

one-ports, representing the evaluated set of poles and ze-
ros. The scattering matrix of passive multiport microwave
circuits is an analytic, real and unity bounded function of
the complex frequency s = σ + jω if

I − S(jω)SH ≥ 0 (37)

is a non-negative matrix for all ω in −∞ < ω < ∞ [55].
Equivalently the impedance or admittance matrix Y (s)

is an analytic and positive real matrix if its elements are
rational functions of s and if

2R(s) = Y (s) + Y
H ≥ 0 (38)

is positive definite for R{s} ≥ 0.
The electromagnetic response of the subregion Ri (Fig-

ure 4) filled with a structure consisting of linear lossless
reciprocal media may be characterized by the relation be-
tween tangential electric and magnetic fields on ∂Rl. Cov-
ering the closed boundary surface ∂Rl either by a perfect
electric conductor or a perfect magnetic conductor makes
the complete structure a lossless resonator. Its electromag-
netic field can be expanded into orthogonal modal func-
tions [56–59].

The relation of electric and magnetic field on the bound-
ary surface ∂Ri can be expressed by the integral

E l
t(x, s) =

∮
′

∂Rl

Z l(x,x′, ω) ∧Hl
t(x

′, ω) , (39)

where Z l(x,x′, ω) is the dyadic Green’s form. Its spectral
representation is given by

Z l(x,x′, ω) =
1

jω
Ll
0(x,x

′) +
∑

p

Ll
p(x,x

′)

j(ω − ωp)
, (40)

where Ll
0(x,x

′) and the Ll
p(x,x

′) are frequency-
independent dyadic double-one-forms [1].

Expanding the field as in (25) into basis functions the
voltages and currents are related by an impedance matrix

Zλ(s) =
1

sC0
B0 +

N
∑

λ=1

1

sCλ

s2

s2 + ω2
λ

B̃λ , (41)

where s is the complex frequency, C0 and Cλ are capac-
itances and B0 and Bλ are real frequency independent
matrices of rank 1 given by

Bλ =











n2
λ1 nλ1nλ2 . . . nλ1nλM

nλ2nλ1 n2
λ2 . . . nλ2nλM

...
...

. . .
...

nλMnλ1 nλMnλ2 . . . n2
λM











. (42)
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Figure 5: Canonical Foster Impedance Multiport.

Figure 6: Canonical Foster Admittance Multiport.

This impedance matrix describes a canonical Foster
impedance multiport as shown in Figure 5 [1, 4, 23].

The dual procedure of derivation yields the canonical
Foster admittance multiport realization described by the
admittance matrix

Yλ(s) =
1

sL0
A0 +

N
∑

λ=1

1

sLλ

s2

s2 + ω2
λ

Ãλ (43)

with the inductances L0 and Lλ and the real frequency
independent rank 1 matrices

Aλ =











n2
λ1 nλ1nλ2 . . . nλ1nλM

nλ2nλ1 n2
λ2 . . . nλ2nλM

...
...

. . .
...

nλMnλ1 nλMnλ2 . . . n2
λM











. (44)

The Foster impedance circuit is shown in Figure 6. The
analytic computation of the circuit parameters of waveg-
uide junctions and other distributed microwave circuits
has been treated in literature [60–65]. It is also possible to
find an equivalent Foster representation from admittance
parameters calculated by numerical field analysis [66, 67].
This has been done by numerical Laplace transformation,
and in a more efficient way by applying system identifica-
tion methods which have been discussed in Section III..

Figure 7: Canonical Foster Impedance Multiport for the
lossy case.

VI. Lumped Element Equivalent Circuits for

Linear Lossy Reciprocal Multiports

The transient response of linear lossy circuits can be de-
scribed by a small number of pairs of conjugate complex
frequency poles [38,68]. Difficulties arise from the circum-
stance that lossy electromagnetic structures are described
by partial differential equations exhibiting non-self adjoint
operators. This usually does not allow to find orthogonal
modal eigenfunctions. In case of weak losses we can seek
the modal eigenfunctions of the lossless structure obtained
by neglecting the losses and than compute the complex
poles applying the power loss method [69].

A further difficulty arises to find an equivalent lumped
element circuit realization for lossy structures. The canoni-
cal Foster realizations are only defined for reactance multi-
ports. In the lossy case equivalent lumped element circuits
can be found by including also resistors in the equivalent
circuits, however, special care has to be taken to maintain
stability of the equivalent circuits [66, 67]. Figures 7 and
8, respectively show the extension of the Foster multiport
equivalent circuits according to Figures 5 and 6 for the
lossy case. The circuit elements can be determined from
poles and residues of the impedance and admittance func-
tions. However, in the lossy case the computation may
yield negative values of the lumped element circuit pa-
rameters. Even if the admittance matrix is fulfilling the
realizability criteria it cannot be in general realized by a
network containing only positive resistors, inductors and
capacitors. The problems of synthesis of RLC impedance
functions is discussed in [3, p. 330]. This is a serious draw-
back of the Foster-like synthesis of lossy multiports. It can
be explained by the fact that the partial-fraction expan-
sion method for the breakdown of a given impedance into
a sum of simple components, represented by equation (10),
cannot guarantee the realizability of components. This can
be explained by a possible cancellation of positive and neg-

8
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Figure 8: Canonical Foster Admittance Multiport for the
lossy case.

ative real-part values of the components in (10) for obtain-
ing the positive real part of the whole admittance.

In principle we can proceed in the synthesis of lumped
element equivalent circuits for linear lossy reciprocal mul-
tiports in a similar way as in the case of lossless multiports.
We start with the matrix of positive rational functions de-
scribing the impedance or admittance matrix of the multi-
port under consideration and try to decompose this matrix
into a sum of two or more positive real function matrices,
for one or more of which we can give circuit realizations.
The remaining parts we can invert and by this way chang-
ing between impedance and admittance representations. A
sum of impedance matrices always represents a series con-
nection of multiports whereas a sum of admittance matri-
ces represents parallel circuited multiports.

If the Foster-like procedure fails for the network synthe-
sis by positive lumped components, the more complicated
but more versatile Brune’s synthesis procedure [70] can
be applied. It realizes an admittance or impedance ma-
trix of order N as a lossless two-port terminated by an
admittance or impedance of the order N − 2. It also con-
sists of a resistance extraction producing a zero of the real
part of the initial admittance at some point s = jω0 of
the imaginary axis. The lossless two-port of the network
needs to have a parallel or series resonance at this fre-
quency point. The example of the Brune’s synthesis real-
ization for the one of the driving-point impedances of the
four-port microwave structure can be found in [71]. Figure
9 gives an example of Brune’s realization of the driving-
point impedance of a one-port. It can be seen that a passive
equivalent circuit contains not only R, L, C elements but
ideal transformers.

The original Brune’s method was extended in [72] to
the case of realizable and possibly nonreciprocal multi-
ports. The implementation of the proposed extension as-
sumes some new kinds of elements: ideal transformers with

Figure 9: The equivalent circuit of the driving-point ad-
mittance.

H K H K

Z

Figure 10: Brune n-port iteration step.

complex turn ratios, real ideal gyrators and imaginary re-
sistors. In the following we only will give a short outline of
the generalized Brune process for the synthesis of general
linear reciprocal lossy n-ports. The procedure comprises:

1. Extraction of a series resistance multiport R,

2. Extraction of a reactive shunt multport Hi,

3. Extraction of a series resistance multiport (1/(s −
si))Ki,

The operations 1) and 2) do not enter the degree of the
multiport while operation 3) decreases the degree by the
rank of Ki so that the process stops after a finite number
of iterations. Figure 10 shows schematically this Brune n-
port realization procedure. The adaptors for parallel and
series connection of the multiports are shown in Figure 11.

VII. Radiating Structures

Consider the complete electromagnetic structure being
embedded in a sphere of radius r0 as shown in Figure 12.
The wave impedances Z+tm

mn (s) and Z+te

mn (s) for the out-
ward propagating tm and te modes in free space r ≥ r0
outside the sphere are [1, 4, 73]

Z+tm

mn (s)

ZF0
=

ZF0

Z+te

mn (s)
= j

d
dr

[

rh
(2)
n

(

− jsr
c0

)]

rh
(2)
n

(

− jsr
c0

) ≡ z(s) , (45)

where c0 is the free space speed of light and h
(j)
n (kr) are

the spherical Hankel functions. The normalized impedance
z(r) can be expressed by the continued fraction expansion

z(s) =
n

sτr
+

1
2n−1
sτr

+ 1
2n−3
sτr

+

. . . 1
1

sτr
+1

, (46)
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Series Connected Multiports Series Adaptor

Parallel Connected Multiports Parallel Adaptor

1

2

3

1

2

3

A

B

C

A

B

C

A

B

C

A

B

C

Figure 11: Adaptors for parallel and series connection of
the multiports.

Figure 12: Horn antenna.

where τr = r/c0. The corresponding lumped element
equivalent circuits representing Z+tm

mn (s) and Z+te

mn (s) are
shown in Figure 13. We can establish lumped element cir-
cuit models of complex electromagnetic structures by rep-
resenting substructures by Foster equivalent circuits, their
connection by connection circuits and the radiation modes
by Cauer equivalent circuits. The block diagram of such a
model is shown in Figure 14.

VIII. Discrete-Time State Equation

Representation

To discretize a variable x(t) in time we take samples at
integer multiples nτ of a chosen sampling time interval τ .

Z
mn

+TM

rε
 n

   rε
2n − 3

   rµ
2n − 1

    rµ
2n − 5

Z
F0

Z
mn

+TE rµ
 n

   rε
2n − 5

   rε
2n − 1

   rµ
2n − 3

Z
F0

(a)

(b)

Figure 13: Equivalent Circuits of Spherical Waves.

Source 1

Source 2

Source k

REACTANCE
MULTIPORT

TM
11

CONNECTION
NETWORK

TM
11

TE
11

TM
m’n’

TE
m’’n’’

Figure 14: Equivalent Circuit of the Radiating Electro-
magnetic Structure.

The z-transform

X̃(z) ≡ Z {x(t)} =

∞
∑

k=0

xkz
−k with xk ≡ x(kτ) (47)

defines the sequence of sampled values of x(t) [33]. Time
discretization of the state equations describing the time
continuous system can be performed by replacing the dif-
ferential quotient by the difference quotient, applying in
(2a) and (2b) the following transformation

Richards transform z-transform

s →
2

τ

esτ − 1

esτ + 1

2

τ

z − 1

z + 1

(48)

to the complex frequency s. This corresponds to the
Richards transformation [28] in frequency domain or to
the z-domain representation of the time discretized sys-
tem [33]. Although both representations are formally
equivalent they are obtained in a different way. The z-
transform representation is obtained in a formal way by
replacing differential quotients by difference quotients,
whereas in the case of the Richards transform inductors
and capacitors are replaced according to Figure 15 by short
and open stub lines, all of them exhibit an equal forth-and-
back delay time τ equal to the time discretization interval.
The circuit obtained by this way is still time-continuous.
When the circuit is excited by delta pulses with spacing
τ also the output signal will be a sequence of delta pulses
with spacing τ since all delay times occurring in this cir-
cuit are integer multiples of the fundamental delay time
τ .
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Lm CnZ0m = 2Lm / τ Z0n = τ / 2Cn

Figure 15: The Richards Transformation.

Ln

Rn

Z0n = 2Ln / τ

Z0n = Rn

Inductance

Resistance

Z0n τ

Z0n

−1

Cn Z0n = τ / 2CnCapacitance Z0n τ

Circuit Element TLSC Element WDF Element

a

b

a

b

a

b

a

b

a

b

a

b = 0

Figure 16: One-Port Elements and their TLS- and WDF
Representations.

IX. Wave Digital Filter Methods

The wave digital filter (WDF) concept introduced by Al-
fred Fettweis in 1971 [31, 32] has proven to be a powerful
tool for time-discrete wave-based modeling of physical sys-
tems [74,75]. The application of WDF structures for elec-
tromagnetic field simulation already has been discussed in
detail by S. Bilbao [76,77].

There is a one-to-one correspondence between a TLSC
model as introduced in Section II. and a WDF model. The
difference, however, is that the TLSC model is an equiv-
alent circuit model based on transmission line segments,
whereas the WDF model deals with signal flow graphs and
is closer to the software implementation of the model. The

−1

Current Source WDF Current Source

Voltage Source WDF Voltage Source

a

b

b

a

Z
0

V0

Matched Source WDF Matched Source

I
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b

V

b

a

Z
0

2V0 +

+2Z0I0I0

V

b

Z
0

V0a

b

V0

IZ0

a

Figure 17: Sources and their WDF Representations.
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Figure 18: Transmission Line Segment and WDF Unit El-
ement.
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Figure 19: WDF Representation of Connection Two-Ports.

inherent properties of WDFs like stability, passivity and
reciprocity guarantee corresponding properties of WDF
models [78,79].

In the following we only can give a brief outline of the ap-
plication of WDF methods for electromagnetic field mod-
eling. To implement a TLSC model according to Figure 3
in WDF we can follow the TLSC topology. The WDF el-
ements representing C, L and R are summarized in Fig-
ure 16. Figure 17 shows the representation of sources as
WDF elements. The transmission line segment with unit
delay time τ = l/c is represented by the WDF unit delay
element shown in Figure 18.

The WDF elements representing ideal transformer and
gyrator two-ports are shown in Figure 19. In WDF adap-
tors are used as the connection elements. A. Fettweis has
introduced elementary parallel and series adaptors repre-
senting parallel and series connections of ports [31, 32].
Figure 20 shows four-port parallel and series adaptors rep-
resenting parallel and series connections of ports. For the
lumped element equivalent circuit of the tmmn radiat-
ing mode shown in Figure 13a the WDF representation
is given in Figure 21.

The 2D–TLM network, established by a mesh of trans-
mission line segments with equal propagation time τ con-
nected via 4–port parallel interconnects [80,81] can be rep-
resented by a WDF–network depicted in Figure 22 [77].
The WDF implementation of 3D–TLM can be done by
arranging 12–port adaptors in a three-dimensional mesh.
These adaptors realize the scattering matrix given in [1,
p. 616, eq. (14.51)]. Every 12–port adaptor is connected via
two WDF unit delay elements with each of its six neigh-
bors.

In [82, 83] WDF techniques have been used to combine
the 3D–TLM with the Cauer representation of the radi-
ating modes. In WDF structures macro–adaptors can be
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Figure 21: WDF Scheme of a Cauer Equivalent Circuit.

introduced by arbitrarily interconnecting together elemen-
tary adaptors, transformers and gyrators [74,75,84]. Con-
centrating all adaptors into a single macro-adaptor yields
the WDF scheme shown in Figure 23 which is equivalent
to the TLSC scheme presented in Figure 3.
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Figure 22: WDF Representation of the 2D-TLM Scheme.
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Figure 23: The WDF Scheme

X. Conclusion

Analytic and numerical methods and examples of their ap-
plication have been discussed. Network methods are appli-
cable in connection with the main analytic and numerical
methods for electromagnetic field modeling and provide a
large variety of tools for an efficient modeling of complex
electromagnetic structures.
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