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Abstract—Traditional TEM resonator theory based design methods 

cannot predict precisely bandwidth of interdigital and especially 
combline filters. Even twice wider bandwidths than assumed can be 
measured in combline filters. Known explanations of the effect are 
discussed and rejected.  Coupled resonators are investigated and proper 
models of coupling are proposed. The difference between coupling 
coefficient definition in an ideal inverter and real inverter coupling is 
explained. A new explanation of bandwidth increase and method for 
design of wide band combline and interdigital filters are presented. The 
design examples of a two-pole 61% wide filter, three-pole 45 % wide 
filter and four-pole 49% wide filter are presented. The measurements 
show a very good agreement with theory. 
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I. INTRODUCTION 
 

Traditional combline and interdigital filter theory [1]-[4] 
based on TEM mode coupling results in bandwidths that are 
too large taking into account the design assumptions. The 
bandwidth ratio defined as actual bandwidth to TEM 
bandwidth increases from 1 to over 2. The higher filter 
bandwidth the problem is getting worse especially in 
combline filters. Interdigital filters are less prone to bandwidth 
increase. The bandwidth increase was noticed in sixties [1] 
and seventies [2] of the previous century but attributed to 
inaccurate design data and “various approximations involved 
in the design equations” [1]. At the end of the previous 
century the problem was extensively examined and explained 
by several theories. Two of them are the most important. The 
effect of variable end loading of resonators [5], [6] and the 
evanescent waveguide mode additional coupling occurring 
when the ratio of filter cross-section height to wavelength is 
over 0.08 [7]. Certainly other explanations like influence of 
coupling between nonadjacent resonators is not a case [7] 
although the nonadjacent couplings have influence on the 
filter characteristics as will be shown later. But there are two 
more explanations of the problem. The bandwidth increase is 
due to misunderstanding of the coupled transmission line 
resonators behaviour and due to application of Cohn’s theory 
for direct coupled filters [8] at least in a case of two pole 
filters. In traditional theory [1]-[4] the classical model of 
coupled lines is used which neglects the important 
information on the initial i.e. uncoupled lines state [8, 9] but it 
is not the reason for the design problems. The main problem is 
with interpretation of the electric length of resonators. The 
eigenfrequencies of coupled resonators are analyzed allowing 
proper selection of a model of coupled resonators. Proposed 

models of coupled combline and interdigital resonators 
involve mixed couplings i.e. electric and magnetic coupling 
simultaneously. The difference between coupling coefficient 
definitions in coupling structures including ideal inverters and 
real inverters is explained.   A new interpretation of coupling 
phenomena is presented leading tothe accurate design of 
combline and interdigital filters. As an example of the method 
accuracy a 61 % wide two-pole, 48 % wide three-pole and 
45 % wide four-pole combline filters have been designed, 
realized and measured. The measurement results are in good 
agreement with theory. The interdigital filters have been also 
designed and simulated in electromagnetic simulator. 

It should be also noted that the design problems can be 
avoided by using 3-D electromagnetic simulators and 
optimization procedures but such a solution is really time 
consuming. The presented method can be much faster and 
sufficiently accurate. Moreover the method gives an 
interesting insight into coupling phenomena. 
 

II. COUPLED COMBLINE AND INTERDIGITAL 

RESONATORS 
 

Let us consider two coupled resonators of cross-section as 
shown in Fig.1. The combline and interdigital resonators have 
the same cross-section. The coupling implies existence of two 
resonant frequencies corresponding to the odd and even 
resonant mode. The higher the coupling between resonators 
the bigger is distance between resonant frequencies. From 
resonant frequencies the coupling coefficient can be computed 
as shown in [11]-[19].  
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The resonant frequencies of coupled combline and 
interdigital resonators have been computed versus the distance 
d between resonators and are presented in Fig.2. The 3D 
electromagnetic  (QuickWave [20]) based on FDTD method 
has been used in these computations. The resonators are 30 
mm long and have the loading capacitance setting the resonant 
frequency of a single uncoupled resonator at 1.27 GHz 
corresponding to electric length θ = 45.77˚. The resonators are 
square and have cross-section s 5x5 mm and are situated 
between metal walls separated by b = 15 mm, s0 = 5 mm. The 
end capacitance is realized with a metal tuning screw of 3 mm 
in diameter moving inside a circular hole of 4 mm in 
diameter. As one can see the resonant frequencies of modes 
are nearly the same when resonators are far from each other. 
When the distance between them approaches to zero resonant 
frequencies change in an asymmetric manner. The coupling 
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coefficient between two resonators is also shown in Fig.2. In a 
case of combline resonators the resonant frequency of the odd 
mode changes much less than the resonant frequency of the 
even mode. Thus when a combline filter is built center 
frequency of the filter is shifted up from its initial value and 
the wider filter bandwidth the bigger is frequency shift. The 
frequency of the maximum of return loss (RL) characteristic 
in passband of the filter can be even approximately computed 
using the formula: 

 
2

21 ff
fc


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E.g. the center frequency for the distance d = 0.3 mm is 
1638 MHz and for distance d = 0.8 mm is 1501 MHz. The 
formula (2) is approximate only and especially in multiple 
resonator filters where the distances between resonators differ 
significantly the center frequency of the filter must be 
somehow averaged. In a case of interdigital filters both 
resonant frequencies change more uniformly form the 
frequency of uncoupled resonators and the center frequency of 
filters is easier to predict.  
 

a) b) 
 

Fig.1. Cross-section of the combline (a) and interdigital (b) filter. 
 

It is important to notice the difference between center 
frequency of the filter and resonant frequency of uncoupled 
resonators. In traditional design [1], [3] the electric length of 
resonators at filter center frequency is used. The formulas 
relating coupling coefficient between parallel coupled 
transmission lines with coupling between resonators of a 
certain electrical length are used: 
combline filters: 

  
2

   +      
  k   =  )  ( K jiji

 cotcsctan 2

,,   (3) 

interdigital filters: 
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where: θ is the resonator electrical length, ki,j is coupling 
coefficient between resonators obtained from synthesis i.e. 
from Cohn’s theory [8].  

The formula for combline filters is much more sensitive on 
electrical length than the formula for interdigital filters. Due 

to difference between center frequency of filters and resonant 
frequency of uncoupled resonators an application of formulas 
(3) and (4) leads to errors in coupling coefficient. And the 
error can be significant especially for combline filters with 
electrically long resonators. Thus when the electric length of 
resonators computed at filter center frequency is used the 
overcoupled resonators and wider filter bandwidths are 
obtained.  

In general the problem of center frequency is quite 
interesting and can be attributed to the coupling phenomenon 
or more precisely to our possibility to model coupling 
between resonators. In general different inverters produce 
filters with different center frequencies in relation to passband 
edge frequencies. To consider the problem precisely the 
resonant frequencies of the coupled combline and interdigital 
resonators are compared with the resonant frequencies of the 
lumped shunt-type LC resonators coupled through J-inwerters 
[1] i.e. the series inductive mutual coupling and series 
capacitive mutual coupling. Formulas describing couplings 
are given below [11], [12], [19]: 
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where: f0 is the resonant frequency of uncoupled resonant 
circuits, and k is coupling coefficient which can be computed 
from resonant frequencies according to formula (1). 

The resonant frequencies of resonators are normalized by 
the resonant frequency of uncoupled resonators and drawn 
versus the coupling coefficient in Fig.3 and Fig.4.  

It is worth mentioning that the eigenfrequency equations 
relating resonant frequencies of coupled LC circuits to 
coupling coefficient were given long ago by Howe [11] and 
later repeated by Sturley [12]. Over twenty years ago the 
coupling coefficient was computed from the resonant 
frequencies of dielectric resonators [13] what started the 
eigenfrequency method so popular now [14]-[19], [21]-[22].  

As can be seen in Fig. 3 the coupling between combline 
resonators is such that there is not easy to apply a proper 
model. In fact a mixed coupling model [12], [14], [17] should 
be used. In this model two J-inverters of the series capacitance 
mutual coupling type and of series inductance mutual 
coupling type are used simultaneously. The total coupling 
coefficient depends on both capacitive and inductive coupling. 
Only for filter bandwidths below 10% (coupling coefficient 
below 0.1 approximately) resonant frequencies of coupled 
combline resonators behave according to series capacitance 
coupling model. Wider filters have center frequencies shifted 
up significantly in comparison with capacitance coupling 
model.   
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Fig.2. Resonant frequencies of coupled combline and interdigital 

resonators and coupling coefficient versus distance between 
resonators. 

As can be seen in Fig. 4 the coupling between interdigital 
resonators can be quite well described with series capacitance 
coupling when they are ~46º long but for the coupling 
coefficient not exceeding 0.6. 

The series inductance mutual coupling quite precisely 
approximates coupled interdigital resonators for any coupling 
coefficient when they are ~82º long. The different types of 
coupling imply different formulas for center frequencies of 
the filters built with interdigital resonators, which are 
electrically short (well below 60º) or long (well over 60º). 
Proper formulas for center frequencies can be found in [1]. 
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Fig.3. Resonant frequencies of combline resonators compared with 
resonant frequencies of models of series coupling. 

 
Although for the resonator approximately 60º long the 

center frequency of interdigital filters is difficult to predict. 
Presumably design of interdigital filters employing resonators 
having length close to 90º can be quite precise when based on 

series inductance coupling model. But the model cannot 
predict precisely the out of band characteristics. For shorter 
resonators the situation can be unclear if the filter bandwiths 
are wider than 60%. The center frequency will be lower than 
predicted from capacitance coupling model. The mixed 
coupling model seems to be the most accurate also in a case of 
interdigital resonators. 
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Fig.4. Resonant frequencies of interdigital resonators compared with 

resonant frequencies of models of series coupling. 
 

Formulas describing mixed couplings shown in Fig.5 are 
given below [18]-19]: 

-series capacitance and series inductance mutual coupling 
(the same sign of    coupling elements Ls and Cs), 
kL=L/Ls, kC=Cs/C 
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-series capacitance and series inductance mutual coupling 
(different signs of  coupling elements), kL=L/Ls, kC=Cs/C 
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Fig.5. Series capacitance and inductance coupling models: 
a) with coupling elements of the same sign,  
b) with coupling elements of different sign. 

Results show that proper real inverters should be used to 
model combline and interdigital resonator couplings. In a case 
of combline resonators mixed series coupling model should be 
used with both positive coupling elements. Such model 
preserves the transmission zero at frequency corresponding to 
electric length of 90 degrees. In a case of interdigital 
resonators the situation is much more complicated. The series 
magnetic coupling model could be suitable for electrically 
long resonator and the series electric coupling model could be 
suitable for electrically short resonators but they are good in 
prediction of center frequency only. The transmission 
characteristic can be predicted more precisely with the mixed 
coupling model. The mixed series coupling model with 
coupling elements of different signs is the most suitable for 
interdigital resonators of any electric length.  
 

III. IDEAL INVERTERS VERSUS REAL INVERTERS 
 

The traditional design method is based on the ideal 
inverters what is another source of problems. Coupling 
coefficient between resonators in combline and interdigital 
filters are computed on the base of Cohn’s method [1,8]. This 
can be a source of design errors especially when the results of 
the eigenfrequency method are used to find couplings and 
distances between resonators. Cohn used ideal inverters to 
develop formulas for coupling coefficients. In the 
eigenfrequency method the real inverters are used. The 
coupling coefficient in Cohn’s method has different definition 
that the coupling coefficient in the eigenfrequency method. 
When two resonant circuits coupled with ideal inverters are 
considered the coupling coefficient (kCohn) depends on its two 
eigenfrequencies as follows: 
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where: f0 is the resonant frequency of uncoupled resonators 
and simultaneously the center frequency of the filter 

 210 fff   (16) 

The formula (15) is obviously different than (1) and the 
coupling coefficient kCohn is different than k. Difference is 
quite small for weak couplings and can be quite big for strong 
couplings. In majority cases the following approximate 
formula can be used to transform the “ideal” Cohn’s coupling 
coefficient to the “real” coupling coefficient used in the 
eigenfrequency method: 
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The “real” coupling coefficient is always smaller than 
“ideal” coupling coefficient and always smaller than 1. The 
“ideal” coupling coefficient kCohn can be much bigger than 1. 
When the coupling coefficients in a filter are calculated 
according to the direct-coupled resonator filters theory and the 
geometry of the filter is established on the base of “real” 
coupling coefficients computed with the eigenfrequency 
method the resulting filter can be wider than expected. 
 

 
IV. GROUND PLANE SPACING INFLUENCE ON 

COMBLINE FILTERS 
 

To check the influence of the ground plane spacing b and 
of variable end loading of resonators on coupling between 
combline resonators the coupling coefficient versus distance d 
has been computed for many different structures. The 
eigenfrequency method as described above has been used. It is 
enough to compare the following three structures having the 
cross-section as in Fig.1 with the following parameters:  

1. b = 15 mm, s = 5 mm, s0 = 5 mm, l = 30 mm (resonator 
length), f(uncoupled) = 1.27 GHz, b/λ = 0.0852 

2. b = 30 mm, s = 10 mm, s0 = 10 mm, l = 30 mm (resonator 
length), f(uncoupled) = 1.27 GHz, b/λ = 0.1704 

3. b = 30 mm, s = 5 mm, s0 = 5 mm, l = 30 mm (resonator 
length), f(uncoupled) = 1.123 GHz, b/λ = 0.1704 

The second case is exactly twice bigger in cross-section as 
the first one and has different loading capacitance only to 
keep the same resonant frequency of uncoupled resonators. 
The third case and first one have the same loading 
capacitances what gives different resonant frequencies. The 
results of computations are shown in Fig. 6.  As one can see 
the values of coupling coefficient do not differ significantly 
(in fact they are nearly the same) in the area of strong 
coupling thus the ground plane spacing influence explanation 
[7] cannot longer be valid. As well as the variable end loading 
[5]-[6] explanation is not true to some extends. The 
evanescent modes should have much more visible influence 
for small distances between resonators than for big ones. Thus 
when the distance between resonators is big and the coupling 
coefficient in structure 2 is 10% bigger than in structure 1 it is 
not the evanescent mode effect. The difference between 
structure 1 and 2 seen in Fig.5 results from different end 
loading. But clearly the effect cannot be a reason for 100% 
bandwidth expansion. The difference between structures 1 and 
3 results from different impedance of lines. The area of weak 
couplings is also interesting because it shows that dependence 
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of the coupling coefficient on electrical length of lines as 
stated in TEM theory [1], [3] has limited accuracy and 
formulas (3) and (4) cannot be considered as exact. 
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Fig.6. Coupling coefficient between two coupled combline 

resonators in different structures. 
 

V. INFLUENCE OF NONADJACENT COUPLINGS 
 

In wide band combline and interdigital filters the 
nonadjacent couplings have quite significant values. Their 
presence is easily observed due to multiple transmission zeros 
at frequencies above the filter passband or reduction of 
transmission zeros. The nonadjacent couplings can be also 
analyzed by means of the eigenfrequency method as in 
[14,19], where a case of three coupled resonators is described. 
The nonadjacent couplings are spurious but should be taken 
into account in the design process. For example in a case of 
three-pole combline filter shown below the spurious coupling 
between resonators 1 and 3 changes the couplings between 
resonators 1 - 2 and 2 - 3. The change is such that the 
couplings 1 - 2 and 2 - 3 should be increased to obtain 
assumed filter bandwidth. The nonadjacent coupling between 
resonators 1 and 3 results in 15% increase of the couplings 
between resonators 1 - 2 and 2 - 3. Because the couplings 
should be increased the nonadjacent couplings cannot be a 
reason for too wide filter bandwidths. Unfortunately 
nonadjacent couplings cannot be avoided. The design method 
should take them into account. Thus the traditional method 
based on direct- coupled resonator filter theory is not 
sufficient. In fact the electromagnetic simulations are needed 
and cannot be avoided. 
 

VI. DESIGN OF WIDE BAND FILTERS 
 

The filter bandwidth according to tradition is as follows: 
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where:  fp1 and fp2 are passband edge frequencies, fca is the 
center frequency of the filter taken arithmetically in the 
middle between fp1 and fp2 . 

The definition of center frequency is arbitrary and is not 
related to the shape of the return loss (RL) characteristic. 
Different types of filters with the same passband edge 
frequencies have different shapes of the RL characteristic and 
different distribution of frequencies of minima and maxima in 
the passband. The formula (2) predicts the frequency of 
maximum of the RL characteristic in the passband.  

In the first step the coupling coefficients between 
resonators ki,j should be calculated for given filter. The 
traditional method [1,3] can be used to calculate coupling 
coefficicients approximately. According to Cohn [8]:  
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where: w is filter bandwidth, ai, aj  normalized elements of the 
low pass prototype filter. 

The “ideal” coupling coefficients obtained from equation 
(19) should be transformed to “real” coupling coefficients 
using formula (17).  

It is not enough to assume that each resonator is coupled 
with two other nearest resonators. The “real” coupling 
coefficients are just starting point to the synthesis or 
optimization method for multiple coupled resonator filters. In 
a case of synthesis the values of couplings between 
nonadjacent resonators will probably be not correctly related 
to the physical structure. For optimization one has to know 
couplings between nonadjacent resonators thus optimization 
should use data from electromagnetic analysis e.g. LINPAR 
[23] or any 3D electromagnetic simulator. The external 
quality factors Qext1 and Qextn should also be obtained from 
synthesis procedure. 
In a case of two-pole filters the “real” coupling coefficient is 
what one needs to realize a filter except Qext which can be 
easily find by optimization in a circuit simulator. To optimize 
the combline filter the circuit shown in Fig.7a can be used 
while the interdigital filter can be modelled with circuit shown 
in Fig.7b. In Fig.7a the resonator consists of the parallel 
resonant circuit LC corresponding to a transmission line of 
certain electrical length and the loading capacitance Ce. The 
coupling structure is realized with real inverter of mixed type 
as in Fig.5. The lines of impedance Z and length l represent 
input tap lines. The LC circuit has the resonant frequency set 
at the frequency corresponding to 90 degrees electric length of 
the combline resonator. As one can see elements Ls and Cs 
create a parallel resonant circuit that has the same resonant 
frequency. Thus at the frequency corresponding to 90 degrees 
there is no coupling. The coupling between LC circuits 
corresponds to the coupled transmission lines thus the 
capacitive coupling coefficient and inductive coupling 
coefficient between LC resonant circuits are the same (kL = 
L/Ls = kC = Cs/C). The presence of loading capacitance Ce 
decreases the value of total capacitive coupling kCtotal = 
Cs/(C+Ce).  Consequently the total coupling coefficient of the 
structure in Fig.7a is as follows: 
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In a similar manner higher order combline filters can be 
modelled including couplings between nonadjacent 
resonators. The main and cross couplings levels can be 
adjusted using a tool like LINPAR [23]. 

The circuit of the interdigital filter is created in the same 
manner except the different signs of the coupling elements. 
The total coupling coefficient of the structure in Fig.7b is 
given by the following equation: 
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Fig. 7. a). Equivalent circuit of a combline two-pole filter. 
 b). Equivalent circuit of an interdigital two-pole filter. 

 
When such circuits for higher order interdigital filters are 

created one should remember that resonators 1 and 3 or 2 and 
4 are oriented as in combline filters thus the real inverters with 
the elements of the same signs should be used to model 
coupling between them. 

The coupling coefficients between resonators can be 
transformed into geometry i.e. distances between the lines 
using data as in Fig.2 or even lookup tables or graphs [24] but 
in the latter the accuracy can be decreased due to limited 
accuracy of formulas (3) and (4). The transfer of external 
quality factors into geometry is more demanding and use of 
electromagnetic simulator is recommended. 
After that the only unknowns are loading capacitances Ce. 
Their approximate values can be computed using formula [1]: 

 
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Z 

1
  =  C e cot   (22) 

where: θ is the electrical length at the resonant frequency of 
the uncoupled resonator, Z is resonator impedance, ω is the 
angular frequency of uncoupled resonators. 

Loading capacitances depend on the resonator position. In 
combline filters inner resonators have bigger loading 
capacitances than computed according to formula (22) in 
interdigital filters inner resonators have loading capacitances 
smaller than computed from formula (22). 
 

VII. SIMULATION AND EXPERIMENTAL RESULTS 
 

The example filters of two, three and four resonators have 
been designed and realized. Two-pole filters have been 
designed as described above.  Three and four resonator filters 
have been designed by optimization in QuickWave. Assumed 
bandwidths were 61 % for 2-pole filter, 45% for 3-pole filter 
and 50 % for 4-pole one. The types of characteristics: n = 2 
equiripple with ripples 0.36 dB (RL = 11 dB), n = 3 equiripple 
with ripples 0.0346 dB (RL = 21 dB) and n=4 equiripple with 
ripples 0.0346 dB (RL = 21 dB). All filters should have the 
same center frequency of 1.5 GHz. In Table 1 the “ideal” 
coupling coefficients calculated from (19) and transformed to 
“real” coupling coefficients (using (17)) are compared with 
coupling coefficients realized in filters. The external quality 
factors and distances between resonators are also shown in 
Table 1. Distances between resonators have been 
approximated slightly in order to apply a precise gap gauge. 

Filters have been realized using resonators of square cross-
section 5x5 mm. The electrical length of resonators has been 
chosen as 45.77º at 1.27 GHz (physical length 30 mm). The 
housings have inner dimensions 15 x 20.3 x 30.3 mm, 15 x 26 
x 30.3 mm and 15 x 32 x 30.3 mm respectively. N-type 
connectors have been used at input and output and their inner 
connectors have been soldered to the resonators at position 
25.6 mm from the resonator ground point preserving the same 
external quality factors for all filters. The resonators have 
been tuned by means of metal screws with diameter of 3 mm 
moving inside resonators (holes of 4 mm in diameter). The 
tuning screws have been used to realize the loading 
capacitances Ce as well as preserve the symmetry of 
characteristics. It is worth noting that the Ce in two-pole filter 

has value corresponding to 1.27 GHz and realizes the filter 
with center frequency fca = 1.5 GHz. The frequency of the 
maximum of RL in the passband is 1.61 GHz what is in a 
quite good agreement with (2). Filters have been made of 
brass. Housings have been silverplated while resonators have 
not. A photograph of two-pole filter is shown in Fig. 8. 
Results of measurements are shown in Fig. 9, Fig. 10 and Fig. 
11.  

 

 
 
Fig. 9. Photograph of the two-pole combline filter without cover. 
 
The two-pole filter has 916 MHz wide bandwidth and RL 

level 10.7 dB, which corresponds quite well to assumptions. 
The center frequency is 1500 MHz. Thus bandwidth is exactly 
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61 %. The situation would be different if the traditional design 
method were used. The center frequency of the filter and 
Cohn’s coupling coefficient used to calculate the electrical 
length of the resonators and then coupling between them 
would produce 30 % bigger coupling coefficient K1,2 what 
means that the filter bandwidth would be significantly 
increased and match deteriorated. 
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Fig. 9. Measured characteristics of the 61% wide two-pole combline 
filter compared with the characteristics of the lumped element model 
(L =1.52 nH, C =2.666 pF, Ls=1.951 nH, Cs=2.077 pF, Ce =2.73 pF, 

Z =85 , l = 5 mm). 
 

The three-pole filter has bandwidth of 673 MHz and RL 
level 20.5 dB, which again corresponds well to assumptions. 
The center frequency is 1499 MHz. Thus bandwidth is 44.9 
%. The four-pole filter has bandwidth of 726 MHz and RL 
level better than 21 dB, which again corresponds well to 
assumptions. The center frequency is 1495 MHz. Thus 
bandwidth is 48.6 %. 

 
TABLE 1.  

COUPLING COEFFCIENTS, EXTERNAL QUALITY FACTORS AND 

DISTANCES BETWEEN RESONATORS. 
 

Filter 

Type 

filter 

order 

kCohn k 

Eq.17 

k 

realized 

Qext_Cohn Qext 

realized

d   

/mm

n=2 k12= 0.6505 0.5646 0.56 2.054 2.1 0.3 

n=3 k12=k23= 0.4795 0.4422 0.52 1.804 2.1 0.5 

 

Comb. 

n=4 k12=k34= 0.4674 

k23= 0.3565 

0.4327 

0.3405 

0.50 

0.46 

1.784 2.1 0.6 

0.8 

Int. n=2 k12= 0.6965 0.5936 0.6 1.5873 2.1 1.15

 
 

A two-pole interdigital filter has been designed and 
simulated in QuickWave [20]. The filter has 42 % bandwidth 
at center frequency 1.59 GHz and ripple level in the passband 
0.0436 dB (RL = 20 dB). The computed characteristics are 
shown in Fig. 12. The resonators of the same cross-section 
and length as in combline filters have been used. The 
input/output structure has also been the same. 
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Fig. 10. Measured characteristics of the 45% wide three-pole 

combline filter. 
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Fig. 11. Measured characteristics of the 49% wide four-pole 

combline filter. 
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Fig. 12. Simulated characteristics of the 61% wide two-pole 

interdigital filter compared with the characteristics of the lumped 
element model (L =3.092 nH, C =1.3108 pF, Ls=6.6681 nH, 

Cs=0.6078 pF, Ce =2.117 pF, Z =85 , l = 5 mm). 
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The coupling coefficients compared in Table 1 confirm 
ideas given in previous paragraphs of the paper and justify the 
proposed design method. Except two-pole filters, the realized 
coupling coefficients are bigger than calculated from direct-
coupled resonator filters theory [8]. Thus the bandwidth 
increase is attributed to the wrong definition of electrical 
length of resonators. The resonant frequency of uncoupled 
resonators is the frequency that scales the coupling between 
them thus the coupling parameters should be computed at the 
frequency of the uncoupled resonators. The bigger coupling 
coefficients are due to nonadjacent resonator couplings. Two-
pole filters need correction of the coupling coefficient 
calculated according to [8] as given by Eq.17. In any case the 
external quality factors must be adjusted. The design of higher 
order filters can be hardly done without electromagnetic 
simulations. 

 
VIII. CONCLUSION 

 
A new explanation of the bandwidth expansion effect in 

combline and interdigital filters has been presented. Coupled 
resonators have been analyzed by means of the 
eigenfrequency method. The results enable to reject known 
explanation of the bandwidth expansion effect and justify the 
change of definition of the resonator electrical length. 
Moreover proper coupling models of combline and interdigital 
resonators are presented. The difference between coupling 
coefficients used in the traditional design and in the 
eigenfrequency method is shown and method to overcome the 
difference is given. The trial combline filters of 62%, 45% 
and 49 % wide bandwidths have been realized and measured. 
The interdigital filter has been also simulated. The results of 
the experiments justify presented approach thus the 
discrepancy between traditionally designed and realized filter 
bandwidths has been explained as resulting from the 
misunderstanding of the coupling mechanism. The design of 
combline and interdigital filters based on the traditional 
method should be limited to double resonator filters or in 
a case of higher filter orders to narrow bandwidths. 
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