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Abstract – This paper is devoted to examining the ability of 
artificial neural networks to model the forward transmission 
coefficient, which represents an important figure of merit for 
microwave transistors. This analysis is carried out for two 
different on-wafer devices, namely GaAs HEMT and Si FinFET. 
As far as the HEMT technology is concerned, the model is 
developed for three devices which differ in gate width. For the 
FinFET technology, the model is determined not only for the 
whole device but also for the actual transistor by using the de-
embedding procedure to subtract the effects of pads, 
transmission lines, and substrate from the measurements. The 
obtained models have been developed and validated in a wide 
range of bias conditions for a frequency range up to 50 GHz.  
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I. INTRODUCTION 

In the past two decades artificial neural networks (ANNs) 
have been applied in lots of applications for modeling 
microwave devices and circuits [1]-[13]. They are suitable for 
modeling applications because of their capabilities to learn 
and to generalize. As a matter of fact, ANNs learn 
relationships between two sets of data and, once properly 
developed, give correct response even for input values not 
included in the set used for the ANN learning. Among the 
ANN applications in the microwave field, there are 
applications addressed to model microwave transistors. ANNs 
have been applied for representing DC, small-signal 
(including noise), and large-signal behaviour of microwave 
transistors [3]-[13].  

In the present paper, the attention is focused on neural 
modeling of the forward transmission coefficient 21S . This 
study is carried out on two different advanced microwave FET 
technologies, namely high electron-mobility transistors 
(HEMTs) [14]-[18] and fin field-effect transistors (FinFETs) 

[19]-[20]. In earlier work we have shown that ANNs can be 
successfully applied for building a multi-bias small-signal 
model for both types of devices [11]-[13]. The aim of this 
paper is to provide a more detailed analysis of the modeling 
for the forward transmission coefficient. This scattering 
parameter has been chosen to be investigated here due to its 
importance as figure of merit for the transistor gain. 
Furthermore, its modeling is quite challenging because the 
dynamic of its variations as the operating bias point changes is 
the highest compared to the other three scattering parameters.  

For the HEMT technology we have analysed three devices 
with different gate width, whereas for FinFETs the analysis 
has been done for the whole device as well as for the actual 
transistor, which is obtained after removing the effects of 
pads, transmission lines, and substrate. 

The paper is organized as follows. A brief description of the 
theoretical background on the ANN modeling technique is 
given in Section II. In Section III the modeling of HEMT 
devices is described, and subsequently, in Section IV the 
obtained results are presented. Section V describes the details 
of the modeling technique for FinFETs. Analyses and 
validation of the developed models for both whole and actual 
devices are given in Section VI. The achieved concluding 
remarks are given in Section VII.  

II. ANN MODELING TECHNIQUE  
 

For both technologies, the modeling of the forward 
transmission coefficient is based on multi-layer perceptron 
(MLP) ANNs [2]. An MLP ANN consists of layers of 
neurons: an input layer, an output layer, and one or more 
hidden layers. The number of neurons in the input layer equals 
the number of independent input parameters, whereas the 
number of the output neurons equals the number of 
parameters to be modeled by the ANN. An ANN is trained to 
learn dependencies between two data sets by optimization of 
thresholds of the neuron activation functions and the neuron 
connection weights. One of the most frequently used 
optimization algorithms is the so-called backpropagation 
algorithm and its modifications with a higher order of 
convergence, namely the quasi-Newton and Levenberg-
Marquardt algorithms [2]. 

Once ANNs have been trained properly, the outputs can be 
determined directly from the ANNs, by finding the response 
of the ANNs for the given input values. 

In the case of the forward transmission coefficient 
modeling the ANN outputs correspond to the real and 
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imaginary parts of 21S . Therefore, the forward transmission 
coefficient can be modeled by one two-output ANN having at 
the outputs the real and imaginary parts. Nevertheless, to 
ensure accurate modeling the considered basic ANN model 
consists of two one-output ANNs trained to reproduce 
separately real and imaginary parts of the coefficient, as will 
be illustrated in details in the following sections. 

The measured forward transmission coefficient data have 
been used for the ANN training. Since the number of ANN 
hidden neurons can not be a priori known, it has been 
determined during the training. Namely, for each of the 
chosen input-output structure, ANNs with different number of 
hidden neurons have been trained and validated. The ANN 
showing the best test statistics has been chosen as the final 
model for the considered case.  

In this paper we are using the following notation: 
MHHN −−− 21  represents the ANN with N  neurons in the 

input layer, M  neurons in the output layer, and 1H  and 2H  
neurons in the first and second hidden layer, respectively. 

To evaluate the model accuracy, the percentage errors E21 
between measured and simulated 21S  were calculated at each 
bias point as follows  
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where fN  represents the number of frequency points. 

III. HEMT NEURAL MODELS 
 

As far as the small-signal model for HEMTs is concerned, 
the model inputs are: input and output bias voltages, 
frequency, and gate width [11]. Therefore, there are four 
neurons in the input layer corresponding to the mentioned four 
input parameters. There are two ANNs in the model aimed to 
model the real and imaginary parts of 21S , as shown in Fig. 1. 
Each ANN is trained separately. 
 

 
 

Fig. 1. Small-signal bias-dependent neural model for the forward 
transmission coefficient of HEMTs with different gate width. 
 

IV. HEMT MODELING RESULTS 
 

The described modeling approach was applied to on-wafer 
AlGaAs/GaAs HEMTs with different gate widths: 100, 200, 
and 300 µm. The models were developed from the measured 
S-parameters. For each device the measurements were done in 
101 points over the frequency range extending from 0.5 up to 

50 GHz and at 546 different bias points (i.e., -1.5 V ≤ gsV  ≤ 0 
V with 75 mV step and 0 V ≤ dsV  ≤ 2.5 V with 100 mV step). 

Two subsets of the measured data set were used for the 
neural model development. The data set used for the training 
of the ANNs corresponds to 42 bias points (i.e., gsV = {-1.35 

V, -1.05 V, -0.75 V, -0.45 V, -0.15 V, 0 V} and dsV = {0 V, 
0.2 V, 0.8 V, 1.2 V, 1.8 V, 2.1 V, 2.5 V}). The other dataset 
(the test set) was used for the model generalization test and it 
corresponds to 34 bias points (i.e., gsV = {-1.5 V, -1.2 V, -0.9 

V, -0.6 V, -0.3 V, 0 V} and dsV = {0 V, 0.5 V, 1 V, 1.5 V,  
2 V, 2.5 V}, with excluded data corresponding to bias points 
included in the training set: gsV = 0 V with dsV = 0 V and 2.5 

V, gsV = -1.5 V with dsV =  0 V and 2.5 V.  
Among the trained ANNs with different numbers of hidden 

neurons, the ANNs exhibiting the best modeling accuracy 
were chosen for the final model. It was found that the ANNs 
chosen to model the real and imaginary parts of the 
transmission coefficient have both two hidden layers with 25 
neurons in each layer (i.e., have structure 4-25-25-1). 

According to the test statistics it was found that the model 
exhibits a very high modeling accuracy over the considered 
bias range. As illustration, Fig. 2 shows the comparison 
between measured and simulated 21S  for a typical bias point 
(i.e., V 6.0−=gsV and V 5.2=dsV ). In Fig. 2 there are also 
the percentage errors calculated at the considered bias point 
for each of the three HEMT devices. It can be observed that 
good agreement between the simulated and measured data 
was achieved.  It should be noted that the considered bias 
point was not included in the training of the neural model, 
which indicates that the neural model shows a good 
generalization.  

It has been found that the higher percentage errors were 
exhibited at bias points where the 21S has very small values, 
namely “pinch-off” and/or low dsV  [11]. At such bias points, 
although the deviations of the simulations from the measured 
data at the “pinch-off” bias point are small in absolute amount 
comparing to the typical values of 21S , the relative percentage 
errors are high because the parameter values are small at 
“pinch-off” [12]. 

Complete test statistics of this model as well as comparison 
with the analytical multi-bias modeling approach can be found 
in [11]. There also information about the modeling of the 
three other scattering parameters can be found. 
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Fig. 2. Simulated (lines) and measured (symbols) 21S  at a typical 
bias point (i.e., gsV = -0.6 V and dsV = 2.5 V) in the frequency range 
from 0.5 GHz to 50 GHz for three scaled HEMT devices with 
different gate widths: (a) 100 μm, (b) 200 μm, and (b) 300 μm. 

 
 

V. FINFET NEURAL MODELS 

The model presented in this work refers to a FinFET device 
fabricated with IMEC technology [21]. The studied multi-
finger and multi-fin device has a gate length of 60 nm, a fin 
height of 60 nm, a fin width of 32 nm, and an amount of 
fingers of 30, where each finger is composed of 6 fins. The 
total FinFET gate width is straightforwardly proportional to 
the number of fins finN and number of fingers fingerN : 

)2(  finfinfingerfin W HNNW +⋅=  (2) 

where finH  and finW  are height and width of a fin, as shown 
in Fig. 3. In the case of the tested device, the total gate width 
is 27.36 μm. 

 
buried oxide 
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Fig. 3. Cross-section of a triple gate FinFET. Illustrative example 
with two fins. 

 
As mentioned earlier, to ensure accurate modeling the 

considered basic ANN model consists of two one-output 
ANNs trained to reproduce separately real and imaginary 
parts of the coefficient, as shown in Fig. 4. Since the modeled 
real and imaginary parts are functions of the frequency and 
the applied bias voltages, both ANNs have three inputs. The 
training targets for the outputs of both ANNs are the 
corresponding measured values in the case of whole device. 
The training data in the case of actual transistor are obtained 
by removing the parasitic effects of pads, transmission lines, 
and substrate with an “open” and “short” de-embedding 
procedure [22]-[23].  

 

  
 

Fig. 4. Basic small-signal bias-dependent neural model for FinFET 
forward transmission coefficient. 

 
The mentioned basic model is suitable for modeling the 

actual device. However, in case of whole device, although the 
basic model exhibits good accuracy averaged over the bias 
and frequency range, there are significant deviations of the 
simulated values from the target measured values in the lower 
part of the frequency range, namely for frequencies where the 
kink caused by the lossy silicon substrate appears. A deeper 
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analysis of the measured data shows that the kink effect has a 
stronger impact on the real part rather than the imaginary part 
of an S-parameter, as will be illustrated in the next section. 
Therefore, for modeling accurately the whole device over the 
full frequency range, we use a special structure of the model 
as depicted in Fig. 5. 

 

 
 
Fig. 5. Small-signal bias-dependent hierarchical PKI neural model 
for the whole device.  

 
The proposed model is a two-step hierarchical neural model 

exploiting the so-called prior knowledge input (PKI) neural 
approach for modeling the real part of the transmission 
coefficient. The PKI ANN approach is based on introducing 
additional inputs to the ANN which are aimed to provide 
additional information about the parameters being modeled 
and helping in that way the ANN to find the proper 
relationship between sets of input and output parameters [1]- 
[2]. In the case of modeling the real part of a parameter, the 
additional prior knowledge corresponds to the real part of the 
considered parameter obtained from the model developed for 
the lower frequencies (ANN0 shown in Fig. 5). The low-
frequency range is determined by the presence of the kink 
effect. In the studied case, the kink effect occurs at 
frequencies lower than 3 GHz.  

Therefore, before the training process of ANN1, which 
gives the final value of the real part for the whole frequency 
range, it is necessary to develop the bias and frequency 
dependent neural model for the lower part of the considered 
frequency range.  

VI. FINFET MODELING RESULTS 

The forward transmission coefficient of the investigated 
FinFET was measured in 201 points from 0.3 GHz to 50 GHz 
under 325 different bias conditions (i.e., 0 V ≤ gsV  ≤ 1.2 V 
with 50 mV step and 0 V ≤ dsV  ≤ 1.2 V with 100 mV step). 
For the training purpose, the data referring to 91 bias points 
uniformly distributed over the range of bias voltages were 
used (i.e., gsV  from 0 V to 1.2 V with 100 mV step and dsV  
from 0 V to 1.2 V with 200 mV step). On the other hand, all 
the available data were used for evaluating the models. It is 
important to note that in this work uniform sampling of the 
training data has been applied, without doing experiment 
design for optimizing the number of measurements needed for 
the model development. 

The percentage errors have been calculated for each of the 
325 available bias points. Moreover, the average and 
maximum 21E values are calculated: 

∑= 21avg 21
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where bN  represents the number of considered bias points.  
First, the basic model depicted in Fig. 4 has been developed 

for the whole and the actual devices. Then two-step model 
exploiting two ANNs for modeling the real part of the forward 
transmission coefficient has been developed for the whole 
device. Table I reports details about the ANNs chosen for the 
final model on the basis of the best achieved modeling 
accuracy. 

TABLE I 
STRUCTURE OF ANNS CHOSEN FOR THE FINAL MODEL  

 Whole device  
(One ANN for 

real part) 

Whole device  
(Two ANNs 
for real part) 

Actual device 
 
 

ANN0 - 4-25-25-1 - 
ANN1 3-25-25-1 4-25-24-1 3-27-23-1 
ANN2 3-24-22-1 3-26-25-1 
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Fig. 6. Frequency dependence of 21S for a FinFET at gsV = 0.8 V and  

dsV  = 0.8 V: (a) basic model; (b) real part at lower frequencies: 
measurements (symbols) and simulations (lines). 
 

When the basic model is applied for the modeling of the 
whole device, the percentage error averaged over the bias 
range is % 6.121avg =E  and the maximum value of the error is 

% 1.5max21 =E . Although these values indicate that very good 
modeling over the considered bias range has been achieved, 
detailed analysis of the error coefficient frequency 
dependences per each bias point has shown that the model has 
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not reproduced well the transmission coefficient behaviour at 
low frequencies where the kink effect occurs, as illustrated in 
Fig. 6a. As mentioned before, this has been caused by the fact 
that the real part of the coefficient has not been modeled 
properly in the lower frequency range (see Fig. 6b). 

The two-ANN PKI model for the real part reproduces the 
real part of the transmission coefficient much better than the 
basic model (see Fig.6b), which has led to better reproduction 
of the transmission coefficient in the lower frequency range, 
as illustrated in Fig. 7. 

From this point on, all presented results for the whole 
device refer to the two-step PKI ANN model.  
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Fig. 7. Frequency dependence of 21S for a FinFET at gsV = 0.8 V and  

dsV  = 0.8 V: measurements (symbols) and simulations obtained by 
two-step PKI ANN model (lines). 
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Fig. 8. Bias dependence of the percentage errors: (a) whole device; 
(b) actual device after applying the "open" and "short" de-embedding 
procedure. 

Bias dependence of the percentage errors for both, whole 
and actual device are plotted in Fig. 8. The analysis of the 
obtained percentage errors shows that in both cases the 
average error does not exceed 2%. The maximum error is 
below 5% for the whole device, whereas for the actual 
transistor the percentage errors are higher than 5% only for 6 
bias points. It should be outlined that the modeling technique 
exhibits very good generalization, as confirmed by the fact 
that 72% of the tested bias points were not used for the 
training of ANNs. As additional illustration of the 
generalization capability, Fig. 9 illustrates the prediction of 
the transmission coefficient for a bias point not used in the 
training of the ANNs for the whole and actual device. The 
corresponding percentage errors are shown together with the 
plots. Information about modeling of the other three scattering 
parameters can be found in [13]. 
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Fig. 9. 21S  for the whole and actual device at bias point  
 gsV  = 0.75 V and dsV  = 0.9 V which has not been used for the 
model development. 

VII. CONCLUSION 
   
In this paper the results of applying the ANN approach for 

building a multi-bias small-signal model for the transmission 
coefficient of microwave FETs are presented. The ANN 
modeling approach has been applied to three scaled HEMT 
devices in GaAs technology and to a Si FinFET, which has 
been investigated before and after applying a de-embedding 
procedure for removing part of the extrinsic contributions 
from the measurements. For both technologies, the model has 
been validated up to 50 GHz.  

The basic model consists of two ANNs, which are aimed to 
model the real and imaginary parts of the transmission 
coefficient. Such a model has provided very good results for 
the HEMT devices and for the actual transistor in the case of 
FinFET technology. The whole FinFET device exhibits the 
kink effect in the lower part of the frequency range which can 
not be properly modeled by the basic model. Therefore, to 
improve the modeling for the whole device, the real part has 
been modeled by two-step ANN model. 

The presented models exhibit very good modeling accuracy 
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not only for the bias points used for the model development 
but also for bias points not seen by the ANNs during the 
training. This enables accurate simulation of the considered 
parameter with an arbitrary grid of bias conditions.  
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