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Abstract – Recently we introduced a new iterative method for 

analysing large perfectly conducting scatterers, called Physical 

Optics Driven Method of Moments (PDM). PDM performs 

grouping of original basis functions and creates macro basis 

functions using these groups. In this paper we present PDM 

results using variable number of groups per iteration. 

Keywords – Method of moments, Basis functions, Physical 

optics, Perfectly conducting scatterers, Iterative methods. 

I. INTRODUCTION 

Surface integral equations (SIEs) of electromagnetic field in 

frequency domain can be solved using method of moments 

(MoM) [1]. MoM transforms SIEs into a system of linear 

equations, which unknowns are weighting coefficients of 

adopted basis functions (BFs). MoM solution is expressed as a 

finite series (linear combination of BFs) so, essentially, it is 

approximate. However, by proper choice of BFs, the solution 

converges toward exact solution when number of BFs 

increases (complete set of BFs), i.e. it is numerically exact. 

The main drawback of MoM is poor scalability - the number 

of BFs per wavelength squared is fixed, hence total number of 

BFs (N) raising fast by increasing frequency. Furthermore, 

memory occupancy is O(N
2
), and CPU solution time is O(N

3
).  

Different strategies for overcoming this problem are 

proposed: hybridization with asymptotic techniques [2,3], 

speeding up matrix vector product in iterative solution of 

MoM system of equations [4], compressing MoM matrix [5], 

and, among all, using specific BFs [6,7]. The idea behind 

specific BFs is to construct BFs which covers larger surfaces 

(than typical BFs), having in mind particular geometry and 

excitation of the problem. Recently we proposed method [8] 

which, in a way, belongs to specific BFs category. The 

method is iterative and it converges toward MoM solution by 

employing correctional currents created in physical optics 

(PO) manner. That is why the method was called PO driven 

MoM (PDM). 

PDM is formulated as method for analyzing perfectly 

conducting closed scatterers. Particularly, PDM is well suited 

for electrically large problems. PDM starts with physical 

optics (PO) solution and then tries to improve it. To do so, 

PDM estimate correctional values for MoM unknowns 

(weighting factors for BFs), then groups BFs which might  

 

have the similar level of estimation quality, create macro basis 

functions (MBFs) using BFs groups, and finally determines 

weighting coefficients for MBFs in a way to minimize 

difference with respect to MoM. PDM needs less memory and 

less CPU time, paid with poorer accuracy than MoM. 

However, from engineering point of view, PDM can provide 

sufficient accuracy in CPU time unreachable to MoM. 

In [8] we noticed that convergence rate of PDM decreases 

trough the iterations. In this paper we will present simple 

modification that can improve convergence of PDM to some 

extent. 

II. PO DRIVEN MOM (PDM) 

A. Formulation of the Problem 

A closed body made of perfect electric conductor (PEC), is 

placed in vacuum and excited by a time–harmonic incident 

electromagnetic field of frequency f and electric and magnetic 

field vectors Einc and Hinc. As a result, electric currents of 

density Js are induced over the body surface, so that the 

incident field inside the body is annihilated. Once these 

currents are determined, all other quantities of interest can be 

easily evaluated. Currents Js can be determined by solving 

electric field integral equation (EFIE) [9], which belongs to 

the linear operator equations in general form 

gf L                                         (1) 

where g is known vector function (excitation), L is linear 

operator, and f is unknown vector function to be determined 

(response). 

B. MoM 

MoM is general method for solution of linear operator 

equation given by (1). Unknown function f is approximated 

by linear combination of N known vector BFs fk multiplied by 

unknown coefficients ak 






N

k

kka

1

a ff .                                    (2) 

This approximation results in error of solution, affE  , and 

error in satisfying equation (1), called residuum, gfR  aL . 

What MoM does is choosing BFs that can represent unknown 
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function fk and then to adjust coefficients ak in order to 

minimize errors of solution in some sense. For that purpose 

residuum is forced to be “orthogonal” to the space of so called 

test functions wj using inner product Njj ,...,1,0, Rw . 

Thus we obtain the system of linear equations, which solution 

gives us coefficients ak, i.e. approximate solution (2), 

Njvaz j

N

k

kjk ,...,1,

1




                        (3) 

where kjjk Lz fw ,  and gw ,jjv  . 

C. Theory of PDM 

PDM takes over MoM geometrical modelling, BFs (fk), 

elements of MoM matrix (zjk), and right hand side terms (vj). 

The difference is that PDM does not solve the system of 

equations (3) – which is the most costly MoM operation – but 

determines ak in iterative procedure.  

Suppose we have PDM solution for Js in iteration i-1, 
)1(

a
i

f . Since the solution is approximate, total magnetic field 

just below the surface of the (closed) PEC body,  1
tot
i

H , will 

exist (whereas it should be zero for exact solution). Note that 

this total field is a sum of magnetic field from sources outside 

the body (i.e. known incident magnetic field incH ), and 

magnetic field due to surface currents (equivalent surface 

sources) )1(
a
i

f ,  )1(
a
i

fH . 

We introduce correctional surface currents 

      Sii
rrHnJ  ,2 1-

tots                         (4) 

where r is a position vector, and n is unit vector normal to the 

surface S of the body and directed outwards. Eq. (4) states that 

correctional current at some point of the surface is calculated 

using magnetic field just below that point. Locally, these 

currents should cancel existing magnetic field below the 

surface (at spatial point). Globally, the cancelation will not 

happen because all other surface currents (other than that 

particular at spatial point) will change the field at spatial 

point. Nevertheless, currents given by (4) are useful lead in 

what direction the correction should go. In order to use them, 

we need to express them as linear combination of basis 

functions, in form given by (2) 

   




N

k

k
i

ka

1

i
s fJ .                               (5) 

Coefficients 
 i
ka  are determined in a way to minimize 

residuum given by 

 
   

 





S

N

k

k
i

k
i SaR i d

2

1

s
s

fJ
J

.             (6) 

Once we determine these coefficients, we can use them to 

build macro basis functions (MBFs) 

   i
N

k

k
i

k
i

lk
i

l Mlab ,...,1,

1

)()( 


fF .                  (7) 

Let us look closer at (7). In ith iteration we build  iM  MBFs. 

At first glance it seems that each MBF is linear combination 

of all BFs kf . But, by setting weighting coefficient )(i
lkb  to 

zero, kth BF is omitted from lth MBF in ith iteration. 

Generally, 10 )(  i
lkb , so we can include kth BF to one or 

more MBFs. 

PDM approximate solution in nth iteration (n>0) is 

expressed as linear combination of all existing MBFs 

 

0,

0 1

)()()(
a 

 

nc

n

i

M

l

i
l

n
il

n

i

Ff                         (8) 

where 
)(n

ilc  are unknown coefficients that should be 

determined. By substituting expression for MBF from (7) in 

(8), and after some rearrangements, (8) can be written as 

   
1

)(
a 




N

k

k
n

k
n A ff                                  (9) 

where 


 



n

i

M

l

i
k

i
lk

n
il

n
k abcA

0 1

)()()()(
.                         (10) 

PDM solution given by (9) has the same form as MoM 

solution given by (2). However, coefficients )(n
kA  generally 

won’t satisfy system of equations given by (3), and instead 

will generate residuum for each equation 

    NjvAzR j

N

k

n
kjk

n
j ,...,1   ,

1




.               (11) 

The mean square residuum after nth iteration is calculated as 





N

j

n
j

n R
N

R
1

2
)()( 1

. After some rearrangements, it can be 

written as 

 

  


N

j
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i

j
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i
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n
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n vZc
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2
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)()(1
                 (12) 
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where 

  




N

k

i
k

i
lkjk

i
jl abzZ

1

)()(
.                          (13) 

By imposing condition that residuum (12) should be 

minimized (with proper choice of coefficients )(n
ilc ) we obtain 

(PDM) system of equations 

     
 

 
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
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

 
  

            (14) 

from which we determine coefficients 
)(n

ilc , i.e. approximate 

PDM solution in nth iteration, given by (7). 

In system of equations (13), i=0 refers to initial solution 

(0th iteration). As initial solution we use physical optics (PO) 

currents, obtained as  

 

 
 









S

S

 ofregion lit ,2

 ofregion  shadow,0

inc

PO
s

rrHn

r
rJ .          (15) 

We treat these PO currents similar to correctional currents (4) 

– we express them in form (2) 

 




N

k

kka

1

0PO
s fJ                               (16) 

and then use coefficients  0
ka  to create MBFs in 0th iteration. 

Though these MBFs can be used to create solution of the form 

(8), we use (16) as initial PDM solution. 

The key point of using PDM is to avoid solution of MoM 

system of equations (3) – for large N, it becomes highly 

inefficient. Instead, in each iteration we solve PDM system of 

equations (14). The order of PDM system (i.e. the number of 

MBFs) is (for large N) much lower than N, enabling greater 

efficiency than MoM. 

D. Realization of PDM 

For the MoM part of PDM we use WIPL-D kernel [10]. 

EFIE is transformed into the system of linear equations using 

Galerkin testing (BFs are used as testing functions) and the 

system is solved using LU decomposition. 

 

Fig. 1. Sketch of bilinear surface 

Geometrical modeling is performed using curved 

quadrilaterals (plates), shown in Fig. 1, described by 

parametric equation 

1,1

])1(1][)1(1[
4

1
),(

2

1

2

1



 
 

sp

spsp

i j

ji
ijrr

.       (17) 

The currents distributed over a plate are decomposed into two 

components in local pOs coordinate system. In particular, the 

s-component is expanded as 




 



1
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i

sp

s
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P           (19) 

where np and ns are orders of approximation along p and s 

coordinates, aij are unknown coefficients, Pij(p,s), j = 0,1, are 

edge BFs, Pij(p,s), j > 1, are patch BFs, pspp  ),(ra , and 

ssps  ),(ra . The p-component expansion is obtained by 

interchanging the coordinates p and s in expressions (18) and 

(18). Edge BFs are common for two plates and are called 

doublets, whereas patch BFs are defined on a single plate and 

are called singlets. 

Correctional currents (4) are calculated in discreet points on 

the surface of the body – sufficient number is   11  sp nn . 

Condition (6) is imposed for each patch separately. Hence 

doublets will be calculated twice and mean value will be 

adopted as corresponding coefficient 
 i
ka  in (5). 

Magnetic field should be calculated in the body, just below 

these points. In each calculation point this field can be 

decomposed into the part due to currents in the point just 

above that point and the part due to all other currents. Since 

we can calculate the first part using boundary condition, and 

the second part is practically the same on the surface and just 
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below the surface, we can use points on the surface for 

magnetic field calculations also. 

In creating MBFs according to (7) initially (in 0th iteration) 

we use indirect approach. First we create groups of physically 

connected plates (see [8] for details). For each group of plates 

we create one group of BFs, including all BFs defined over 

the plates of the group. Now we can create MBFs using 

groups of BFs. Coefficient 
)0(

lkb  will be 1 if BF kf  belongs 

only to lth group of BFs, will be 1/2 if BF kf  belongs to the 

lth group and one other group of BFs, and will be 0 otherwise. 

In subsequent iterations such scheme (grouping) can be 

preserved or can be changed. Note that, in 0th iteration, MBFs 

created using groups of BFs which are completely in the 

shadow area (where PO currents are zero) are zero, so we 

omit them. 

III. NUMERICAL RESULTS 

Consider PEC airplane, about 40λ long, placed along z-axis 

in Cartesian coordinate system, with wings spanned in xOz 

plane, as shown in Fig. 2a. The airplane is excited by 

circularly polarized plane wave incoming from direction given 

by angles  45  and  45  (θ is measured from xOy 

plane to z-axis). The airplane is modeled by 7445 plates. The 

2nd order approximation is used for almost all plates, so that 

total number of MoM basis functions is N = 59201. We use 

M = 643 groups of plates (386 are in lit zone), shown in 

Fig. 2b, for creation of initial MBFs. 

 

  

 

Fig. 2. a) PEC airplane, excited by circularly polarized wave, 

modeled with 7445 plates, and b) 643 groups of plates 

First we performed PDM analysis keeping initial grouping 

scheme throughout the PDM analysis. It means that we have 

643 fixed groups of BFs (additional 643 MBFs in each 

iteration). In each iteration we calculate residuum (11) for 

each BF, and then we square and normalize its module 

  Nk

R

R
R

N

j

n
j

n
kn

k
,..,1,100%

1

2
)(

2
)(

)(
BF 




.            (20) 

Then we calculate residuum for each group of BFs 

MlRbR

N

k

n

k
n

lk
n

l
,..,1,

1

)(
BF

)()(
G 



,                (21) 

and finally we calculate cumulative residuum 

   MjRjR

j

l

n

l

n
,..,0,100

1

)(
GCUM  



.         (22) 

When calculating cumulative residuum using (22) we suppose 

that 
)(

1G
)(

G
n

l

n

l
RR


 , i.e. we sorted residua of groups of BFs in 

non-growing order. Hence, cumulative residuum says which 

percent of total residuum will preserve after we “remove” j 

BFs groups with highest residua. Cumulative residuum for 

number of iterations n from 1 to 7 is shown in Fig. 3. We can 

see that e.g. after seven iterations about 100 groups of BFs are 

carrying about 60% of total residuum. 

  

Fig. 3. Normalized cumulative residuum for different number of 

iterations 

Can we improve convergence if we split these “bad” 

groups? In order to examine this, we will modify grouping 

scheme a little bit. After each iteration n (n>0) we will 

calculate cumulative residuum (22) for existing groups of 

BFs. Then we will find minimal jc such that 

   cutoff
CUMcCUM RjR

n
                        (21) 

where cutoff
CUMR  is cumulative residuum cut off value for 

groups, which we will adopt. Then we will split each group of 

BFs from 1 to jc in two (if jc = 0 there is no splitting). 

Does it make difference how we will split the groups of 

BFs? To check this, we will calculate normalized cumulative 

residuum for each group and set cut off value for BFs in the 
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same way as for groups. Then we will split BFs from single 

group in two groups using cut of value as threshold. 

Presented technique for splitting groups will be referred to 

as adaptive grouping technique (AGT), and the method as 

PDM based AGT. 

Integral measure of PDM convergence is Residuum 





N

j

j

n
n

v
N

R
R

1

2

)(
)(

norm
1

.                            (23) 

Residuum, as defined in (23), can take values between 0 

(for MoM solution) and 1 (zero solution). We expect value 

about 0.01 for sufficiently accurate solution, and about 0.001 

for excellent agreement with MoM result. The rate of 

Residuum decrease is the speed of PDM convergence. 

 

a) 

 

b) 

Fig. 4. PDM-AGT applied to airplane, Residuum vs Iterations, for 

cut off value for BFs of (a) 30%, and (b) 70% 

Fig. 4 shows convergence trough PDM iterations, for 

different cumulative residuum cut off values for groups 

(100%, 70%, 50%, 30% and 10%). Value 100% means that 

there is no splitting at all, value 70% means that groups of 

BFs (with highest residuum) making 30% of total residuum 

will be split (each in two new groups), and so on. By 

decreasing cut off value for groups, number of groups that 

will be split increases and, hopefully, convergence too. The 

splitting of the groups was performed according to cumulative 

residuum cut off value for BFs. In Fig. 4a this value is 30%, 

whereas in Fig. 4b it is 70%. Obviously results are very 

similar, and the same refers to values in between, which are 

not presented here. So it seems that 50% is good practical 

choice for BFs cut off. Now, looking at any of the Figs. 4a-b, 

we see that Residuum of 0.002 is reached after 5 iterations 

with 10% groups cut off value, but in 7 iterations without 

splitting (100% groups cut off). Since CPU time per iteration 

is similar for both procedures (number of MBFs become 

significant only for large number of iterations), procedure 

with 10% groups cut off will reach the same Residuum in 

shorter CPU time. 

Fig. 5 shows how residuum changes as a function of 

number of MBFs (i.e. efficiency of the method). 

 

a) 

 

b) 

Fig. 5. PDM-AGT applied to airplane, Residuum vs MBFs for BFs 

cut off value of (a) 30%, and (b) 70% 

Obviously, PDM-AGT for groups cut off 10% is the least 

efficient (given Residuum is reached with the largest number 

of MBFs), but all other values gives similar results. It means 

that we can obtain the same Residuum with similar number of 

MBFs. 
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Fig. 6. PEC helicopter with 7445 plates and has 420 groups 

Second example is PEC helicopter, about 65λ long, placed 

along x-axis, as shown in Fig. 6. The helicopter is excited by 

circularly polarized plane wave incoming from direction given 

by angles  135  and  45 . The helicopter is 

modelled by 13727 plates. The 2nd order approximation is 

used for almost all plates, so that total number of BFs is 

N = 109636. We use M = 420 groups of plates (324 are in lit 

zone). 

Residuum trough the iterations of PDM-AGT is shown in 

Fig. 7. BFs cut off is 50%. We see that groups cut off 50% 

curve drops almost linearly, and that reaches Residuum of 

0.01 in 5 iterations, “more than” 2 iterations earlier than 100% 

curve (no splitting). 

Residuum versus number of MBFs is shown in Fig. 8 

(iterations are marked for each curve) – slightly better for 

100% curve, but nothing dramatic. 

RCS (Radar Cross Section) obtained by PDM-AGT 

solution (groups cut off 50%) in 5th iteration is compared to 

MoM result in Fig. 9. very good agreement. 

 

Fig. 7. PDM-AGT analysis of helicopter, Residuum vs Iterations 

 

Fig. 8. PDM-AGT analysis of helicopter, Residuum vs MBFs 

 

Fig. 9. RCS for helicopter MoM vs PDM-AGT (cut off 50%) 

IV. CONCLUSION 

In this paper we introduced simple technique for improving 

convergence rate of PDM method (PDM-AGT). In each 

iteration groups of BFs with highest residuum (error of 

solution) were divided (each in two new groups), thus 

allowing better correction in the following iterations. Since 

there is no certain rule how to choose initial number of groups 

of BFs for each particular model, this technique enables 

adaptive correction once the PDM is started. Numerical 

results shows that the technique indeed improves speed of 

convergence. 

ACKNOWLEDGEMENT 

This work was supported by the Serbian Ministry of 

Science and Technological Development under Grant TR-

32005. 



December, 2012  Microwave Review 

 

8 

REFERENCES 

[1] R. F. Harrington, Field computations by moment methods. New 

York: MacMillan, 1968. 

[2] U. Jakobus and F. M. Landstorfer, “Improved PO-MM hybrid 

formulation for scattering from three-dimensional perfectly 

conducting bodies of arbitrary shape,” IEEE Trans. Antennas 

Propag., vol. 43, no. 2, pp. 162–169, Feb. 1995. 

[3] E. Jørgensen, P. Meincke, and O. Breinbjerg, “A hybrid PO-

higher-order hierarchical MoM formulation using curvilinear 

geometry modeling,” in IEEE Antennas and Propagation Soc. 

Int. Symp. Dig., vol. 4, Columbus, OH, Jun. 22–27, 2003, pp. 

98–101. 

[4] R. Coifman, V. Rokhlin, and S. Wandzura, “The fast multipole 

method for the wave equation: A pedestrian prescription,” 

IEEE Antennas Propagat. Mag., vol. 35, no. 3, pp. 7–12, June 

1993. 

[5] J. Shaeffer, “Direct Solve of Electrically Large Integral 

Equations for Problem Sizes to 1 M Unknowns,” Antennas and 

Propagation, IEEE Transactions on , vol.56, no.8, pp.2306-

2313, Aug. 2008. 

[6] V. Prakash and R. Mittra, "Characteristic basis function 

method: A new technique for efficient solution of Method of 

Moments matrix equations," Microwave and Optical 

Technology Letters, Vol. 36, No. 2, pp. 95-100, Jan. 2003. 

[7] L. Matekovits, V. A. Laza, and G. Vecchi, "Analysis of large 

complex structures with the synthetic-functions approach," 

IEEE Transactions on Antennas and Propagation, Vol. 55, No 

9, pp. 2509-2521, Sep. 2007. 

[8] M. Tasic,  and B. Kolundzija, “Efficient Analysis of Large 

Scatterers by Physical Optics Driven Method of Moments,” 

Antennas and Propagation, IEEE Transactions on , vol.59, 

no.8, pp.2905-2915, Aug. 2011. 

[9] B. Kolundzija and A. Djordjevic, Electromagnetic modeling of 

composite metallic and dielectric structures, Norwood, USA: 

Artech House, 2002. 

[10] WIPL-D Pro v9.0, 3D EM solver, http://www.wipl-

d.com, 2011. 

 


