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Abstract – In this paper we present a simple method for 

efficient modeling of the tunneling effect in a non-homogeneous 

epsilon-near-zero (ENZ) waveguide, using an equivalent circuit 

approach. ENZ waveguide consists of rectangular waveguides 

filled with two-layered dielectric, E-step, and a narrow channel. 

It was shown that the E-step in a non-homogenous structure can 

be modeled rather simply using a shunt capacitor whose 

capacitance is determined analytically using the same expression 

which applies to homogeneous rectangular waveguide. In that 

case the error in determining the first resonance is less than 1%, 

while in the case of the second resonance the error is less than 

2.5%, if the non-homogeneity is not very large, i.e. if the ratio 

between the relative permittivities of the dielectrics in the input 

waveguides and the channel is less than two.  

Keywords – ENZ waveguide, E-step discontinuity, Tunneling 

effect, Equivalent circuit 

I. INTRODUCTION 

 In the last couple of years, since it was theoretically shown 

that energy transfer through very narrowed waveguide 

structures consisting of input waveguides and a channel 

between them is possible [1], a large number of papers 

considering this phenomenon and it's applications was 

published. This phenomenon puts waveguide transmission 

systems in an entirely new context, giving them a series of new 

applications. The transfer of energy through these systems, or 

so called "tunneling", occurs just below the cut-off frequency 

of the fundamental mode in the narrow channel, if the channel 

is formed only by changing the input rectangular waveguide 

height. At the tunneling frequency, dielectric in the channel 

has an effective permittivity close to zero and is thus called 

epsilon-near-zero, or ENZ channel. Also, at the tunneling 

frequency, wavelength becomes infinitely large and the phase 

shift becomes zero, so the tunneling frequency is also known 

as the zero-order, or ZOR resonance. Tunneling effect can be 

achieved even above the cut-off frequency of the fundamental 

mode by reducing the width of the channel. In a narrowed 

ENZ channel, the dielectric permittivity can be greater than 

dielectric permittivity in the input waveguides, which is not 

the case with a classical design. 

 ENZ waveguides are multi-band structures since besides 

the tunneling effect, so called Fabry-Perot resonances also 

occur. These Fabry-Perot resonances strongly depend on the 

length of the channel, which is not the case with the ZOR 

resonance. ZOR resonance is determined by the width of the 

channel and relative permittivity of the dielectric in the 

channel. Tunneling effect has been experimentally verified at 

microwave frequencies using rectangular waveguide 

dispersion characteristics near the cut-off frequency of TE10 

mode [2]. It was shown that a similar effect could be achieved 

by using complementary split-ring resonators mounted on the 

surface of the channel [3], and also by using thin wire grid 

placed along the channel, in which the tunneling frequency no 

longer depends on the dielectric constant in the channel, but 

on the diameter of the wire conductors. As a result, the 

possibility of multi-band operation is demonstrated in [4] 

using two separate channels of the same dielectric constant. A 

variant of ENZ waveguide which is very convenient for 

implementation, as it allows control over the attenuation in the 

channel, is the use of a microwave substrate which serves as 

both the ENZ channel, and as a support for the input 

waveguides proposed in [5]. Microwave substrates are strictly 

defined in terms of thickness of the dielectric and 

metallization roughness, both of which strongly influence the 

attenuation in the channel, as it has been shown in [6]. 

 The possibility of shifting the resonant frequency of ENZ 

structures has been demonstrated so far only in two papers: in 

[7], where the ZOR shift has been performed using a varactor 

diode, and in [5], by changing the length of two slots on the 

channel surface. 

 In addition to the increase of the possibilities of today's 

computers, and thus their ability to solve larger and more 

complex problems in the field of electromagnetics, the 

importance of presenting a problem using equivalent circuits 

does not lose on its importance. The purpose of using 

equivalent circuits is a significant save of time and memory 

resources, compared to using a full-wave electromagnetic 

solver, with a sufficient accuracy. The accuracy of the 

obtained results largely depends on the fidelity with which the 

equivalent circuit approximates the real physics behind the 

problem. It is possible to find equivalent circuits [8], [9] 

which model complex problems very precisely, even at high 

frequencies. 

 The role of the equivalent circuit is more noticable in  

optimization process since it allows much faster optimization 

in respect to time consuming full-wave simulations with high 

demands regarding computer resources.  

 The aim of this paper is to show the accuracy of modeling 

ENZ waveguide structures using an equivalent circuit, with 

respect to the non-homogeneity of the input waveguides 

consisting of a two-layer dielectric: a thin dielectric layer, 

which is an extension of the ENZ channel, and a thick 

dielectric which fills the rest of the input waveguide. It should 

be noted that there is not an equivalent circuit model for E-
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step discontinuity of this kind of structure to be found in the 

literature. To model this discontinuity we will use a model 

valid for the E-step discontinuity in a waveguide with 

homogeneous dielectric, but with a minor modification which 

takes into account the existence of a two-layer dielectric in the 

input waveguide.  

II. NOVEL ENZ WAVEGUIDE DESIGN 

 In this paper, the ENZ waveguide structure proposed in [6] 

is modeled, in which a channel extends along the input 

waveguides so that the input waveguides consist of two 

different substrates. The non-homogeneous structure of the 

input waveguides is depicted in Fig. 1. Dielectrics in the input 

waveguides and channel are marked with different colors, and 

the whole structure has a metal coating, except for the leftmost 

and the rightmost side where the waveguide ports are placed. 

The following dimensions were used: 

 

 a – width of the input waveguide 

 b – height of the input waveguide  

 Lw – lenght of the input waveguide  

 bch – channel height 

 Lch – channel lenght 

 εrw – relative permittivity of the upper dielectric in 
the input waveguide 

 εrch – relative permittivity in the channel. 

 

 

Fig. 1. ENZ waveguide with relevant dimensions: a=7.62mm, 

b=4.06mm, bch=0.254mm, Lw=7mm, Lch=7mm, εrw=5.95 and εrch=3 

 To support tunneling, ENZ waveguide must have two E-

step discontinuities as was shown in [5]. If the structure 

consists only of the input waveguide and the channel, the 

tunneling effect does not occur. 

 As the Fig. 1 shows, the input waveguides consist of two 

dielectrics, which further complicates the approximation of 

this part of the structure with the equivalent circuit. Relative 

permittivity condition which must be met in order to have 

tunneling can be found in literature [2]: 

 

.
4

rw
rch rw


    (1) 

 

 However, even if this condition is not met, tunneling in the 

structure may occur if the channel width is sufficiently 

reduced.  

 Fig. 2 gives a typical frequency dependence of reflection 

and transmission coefficients for this structure, obtained by 

full-wave 3D simulation for two different channel and input 

waveguide height ratios. In this picture two resonant 

frequencies marked with ZOR (zero-order resonance - 

tunneling frequency) and FP (Fabry-Perot) resonance are 

clearly visible. It will be shown that the tunneling frequency is 

not sensitive to the changes in the length of the channel, which 

is not the case with the FP resonance.  

 In addition, mechanisms behind these resonances are not 

the same, which can be seen from Fig. 3 and Fig. 4, which 

show the field distribution along the channel for both cases. In 

Fig. 3 it can be seen that the tunneling frequency exhibits no 

phase shift along the channel. On the other hand, Fig. 4 clearly 

shows a standing wave formed in the channel with the 

maximums at the open ends of the channel.  
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Fig. 2. Simulated S-parameters for ENZ waveguide in Fig. 1 for 

different bch/b ratios: bch/b=0.06 (solid line), bch/b=0.12 (dashed line) 

 

 

Fig. 3. Electric field distribution in the channel at the tunneling 

frequency 
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Fig. 4. Electric field distribution in the channel at FP resonance 

III. THE EQUIVALENT CIRCUIT 

 Fig. 5 depicts an ENZ waveguide equivalent circuit in 

which the input waveguides and the channel are modeled 

using transmission line sections with Z
c
w, βw and Lw, and Z

c
ch, 

βch and Lch parameters, respectively. It should be noted that Z
c
w 

and Z
c
ch are characteristic impedances of the equivalent 

transmission lines, and not wave impedances of TE waves in 

the waveguides. E-step is modeled using a capacitor C. 

 

 

Fig. 5. Equivalent circuit for the structure in Fig. 1 

 We emphasize that there is another way to model the 

waveguide change in height by using capacitors and ideal 

transformers [10]. However, the equivalent circuit in Fig. 5 is 

simpler, and gives the results of the same accuracy. 

 As it was previously mentioned in the introduction, there 

are two dielectric slabs placed perpendicular to the electric 

field vector in the input waveguides. Therefore, instead of the 

classical formulation of the phase coefficient for the TE wave, 

an expression for the guided wavelength in this kind of 

structure was taken from the literature [11]: 
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Here, λ0 stands for the free-space wavelength. The phase 

coefficient and wave impedance in input waveguides, βw and 

Z
w

w, are given by the following expressions: 
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 Using of the classical relation for calculating the phase 

coefficients in the input waveguides for TE waves would 

require some kind of dielectric homogenization, which was 

avoided by implementing (2). By comparing the calculated 

and simulated values for the guided wavelength in the input 

waveguide, a perfect agreement was observed, regardless of 

the dielectric constant, and thus confirming the validity of the 

expression (2).  

 Unlike the input waveguides, the channel consists of only 

one dielectric, and it is possible to use the classic formulation 

for the TE waves. The parameters of the channel, i.e. the 

phase coefficient βch, and the wave impedance of the TE10 

wave Z
w

ch, are given by: 
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 It is necessary to get the characteristic impedances which 

describe the transmission line sections from the TE10 wave 

impedances. The waveguide wave impedance is defined as the 

ratio between the electric and magnetic field intensities, and 

the characteristic impedance of the equivalent transmission 

line is given as the ratio between the voltage and the current in 

a given point of the transmission line. Bearing in mind that the 

voltage and current are defined as line integrals of the electric 

and magnetic field, respectively, it becomes clear that it is 

possible to approximate the characteristic impedances of the 

transmission lines with the expressions of the form: 
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 Factor 2 in relations (7) and (8) is placed to compensate 

the sinus distribution of the electric field along the width of a 

rectangular waveguide. 

 Special attention must be paid to the modeling of the 

waveguide with the TE10 wave, if the operating frequency is 

below the cut-off frequency of the dominant mode. For the 

case when the operating frequency is above the cut-off 

frequency of the TE10 mode, there is wave propagation in the 

waveguide and the expression under the square root in (5) is 

positive. It should be noted that the square root in the 

expression (5) is a real mathematical operation.  

 However, when the operating frequency is below the cut-

off frequency of the TE10 mode, evanescent waves with 

strongly pronounced attenuation are present in the waveguide, 

and instead of equation (5) we should use an expression of the 

form: 
2

2

0 0 ,ch rchj
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where γch marks the complex propagation coefficient in the 

channel. In equation (9) the square root is a complex 

mathematical operation and it can provide a solution with 

either a positive or a negative sign. This prefix should be 

chosen so that the real part of the complex propagation 

coefficient in the channel, Re{γch}, is greater than zero, which 

corresponds to the nature of the evanescent waves. Lossless 

equivalent transmission lines were used for modeling of the 

waveguide sections. 

 Waveguide height changes were modeled using shunt 

capacitors. This was done in order to adequately model the 

surplus charge that accumulates on the vertical walls in places 

where the change of height occurs. The expressions used to 

define the capacitances of these capacitors were taken from 

[11] for the case of asymmetric coupling of two waveguides. 

Based on these expressions, frequency dependence of this 

capacitance for several different types of dielectric in the 

channel was derived, as shown in Fig. 6. It should be noted 

that the expression for the capacitance was derived for the 

case when the dielectrics in both waveguides are identical, and 

strictly speaking does not match the case when the input 

waveguide is filled with two-layered dielectric as in Fig. 1. 
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Fig. 6 Frequency dependance of the shunt capacitance for several 

different dielectrics in the channel 

 Fig. 6 shows that this capacitance has a singularity which 

occurs when the condition b=λgw/2 is met, which happens at 

the cut-off frequency of the next mode that involves the 

change of the electric field along the waveguide height, i.e. at 

the cut-off frequency of the TE11 mode in the input 

waveguides. The error of the expressions defining the 

capacitance can be lower than 1% if a condition 2b/λgw≤1 is 

fulfilled. It is worth mentioning that the capacitance illustrated 

in Fig. 6 is singular in the sense that at the frequency fcTE11 it 

will have infinitely large value and therefore at that frequency 

in the circuit from Fig. 5, a short-circuit can be placed instead 

of the capacitors.  

 All sections in Fig. 5 were modeled using the appropriate 

ABCD matrices, whose parameters for each element in the 

circuit were taken from [12]. After cascading these ABCD 

matrices and their multiplication, the obtained ABCD 

parameters were transformed into the scattering parameters (S-

parameters) using the relations given in [12]. 

IV. COMPARING THE SIMULATION RESULTS 

 In this section an overview of the ENZ waveguide 

simulated S-parameters obtained using the equivalent model 

and full-wave analysis, will be presented. 

 To demonstrate the results, an ENZ waveguide with the 

following input waveguide dimensions was chosen: width 

a=7.62mm, height b=4.06mm and length Lw=7mm, while the 

channel's height is bch=0.254mm and length Lch=7mm. 

Relative permittivities of the input waveguide and the channel 

are εrw=5.95 and εrch=3, respectively.  

 The transmission coefficient, S21, in the considered 

structure for three different values of channel length is shown 

in Fig. 7. The figure shows that the change in length of the 

channel can affect the position of the FP resonance to a much 

greater extent, while the change in position of the ZOR is 

rather small. In other words, ZOR practically does not depend 

on the length of the channel, while the FP resonance does.  

 For the case of the channel length equal to 7mm, 

equivalent model is making an error in estimating the position 

of the ZOR and FP resonances of 0.7% and 0.9%, 

respectively. As for the case when the channel length is equal 

to 10mm, the errors are 0.5% and 0.1%, respectively. If the 

channel is 14mm long, the error in predicting the positions of 

ZOR and FP resonances are 0.4% and 0.8%, respectively.  

 Therefore, it can be concluded that the results obtained 

using equivalent circuit model are in a very good agreement 

with the results obtained from the full-wave simulation, since 

the difference between the two ways of calculating the 

resonances is less than 1% for both of the resonant 

frequencies. 
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Fig. 7. Transmission coefficient, S21, for equivalent (solid line) 

and full-wave model (dashed line) for three different channel lengths: 

Lch=7, 10, 14mm 

 Fig. 8 shows the transmission coefficient in the considered 

structure for three different values of the relative permittivity 

of the dielectric filling the channel. For the case when the 

channel dielectric has relative permittivity εrch=2, the errors in 

the positions of ZOR and FP resonances are 1.5% and 2.5%, 

respectively. If the relative permittivity of the channel is 

chosen to be εrch=4, the errors are 0.4% and 1.4%, 

respectively. The same figure shows the case when the channel 

relative permittivity is εrch=3, as a referent case. 
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It can be concluded that the equivalent model makes a 

smaller error if the relative permittivity of the channel 

increases, compared to the case when εrch decreases, which 

makes sense because increasing the dielectric constant of the 

channel reduces the discontinuity between the dielectrics in 

the input waveguide. In both cases, the error does not exceed 

2.5%, and it can be said that the agreement between the results 

obtained using the equivalent circuit and 3D simulation is very 

good. It should be noted that when changing the relative 

permittivity of the channel, the condition (1) must always be 

satisfied. 
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Fig. 8. Transmission coefficient, S21, obtained using the equivalent 

circuit (solid line) and full-wave analysis (dashed line) for three 

different dielectrics in the channel (εrw=5.95) 

V. TUNNELING FREQUENCY CALCULATION 

 Now we will address the conditions that must be met in 

order to have a resonance in this structure. In [5], a tunneling 

condition at the ZOR frequency was derived: 
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which means that the tunneling effect occurs precisely at the 

cut-off frequency of the dominant mode in the channel. 

 According to the markings from Fig. 9 following 

expressions can be written: 
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Fig. 9. - Equivalent circuit of the considered structure with all the 

relevant markings 

The condition that needs to be fulfilled in order to have a 

resonance, is to have a perfect match at the input of the 

structure, i.e. Zin=Z
c
w. 

 After solving the equations (11)-(15), two transcedental 

relations are obtained: 
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(17) 

where 1/ .
cond

X C   

 The condition (16) forms a discrete set of frequency points 

at which the imaginary part of the impedance Zin is equal to 

zero. Similarly, the condition (17) forms a discrete set of 

frequency points at which the real part of the impedance Zin is 

equal to Z
c
w. The intersection of these two sets of frequency 

points provides a set of tunneling frequencies for the 

considered structure, i.e. a set of frequencies for which the 

tunneling condition is fulfilled. 

 Fig. 10 shows the real and imaginary parts of the 

impedance Z4 from Fig. 9, for the structure with the initial set 

of parameters. 

It can be observed from Fig. 10 that the impedance Z4 (and 

thus the impedance Zin from Fig. 9) has the imaginary part 

equal to zero and the real part equal to Z
c
w, precisely at the 

resonant frequencies (ZOR and FP), which implies that the 

matching condition is fulfilled at these frequencies. 

Table 1 gives an overview of the calculated resonance 

frequencies using the relations (16) and (17), and those 

obtained using the full-wave simulation, for five different 

channel lengths. 
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Fig. 10. Real and imaginary parts of the impedance Z4 from Fig. 9 

 Table 2 gives an overview of the calculated resonance 

frequencies using the relations (16) and (17), and those 

obtained using the full-wave simulation, for five different 

dielectrics filling the channel. 

 

TABLE 1  

COMPARISON OF THE ZOR AND FP RESONANCES OBTAINED 

USING THE TUNNELING CONDITIONS AND FULL-WAVE 

SIMULATION FOR VARIOUS CHANNEL LENGTHS, Lch (εrw=5.95 

AND εrch=3) 

 

ZOR 
[GHz] 

(Equivalent 
circuit) 

ZOR 
[GHz] 

(full-
wave) 

│δZOR│ 
[%] 

FP [GHz] 

(Equivalent 
circuit) 

FP 
[GHz] 

(full-
wave) 

│δFP│ 
[%] 

Lch=7mm 11.06 11.14 0.72 14.90 14.75 1.02 

Lch=9mm 11.12 11.19 0.63 13.76 13.72 0.29 

Lch=11mm 11.16 11.22 0.53 13.04 13.04 0 

Lch=13mm  11.19 11.24 0.44 12.58 12.61 0.24 

Lch=15mm 11.22 11.26 0.36 12.27 12.30 0.24 

 

TABLE 2  

COMPARISON OF THE ZOR AND FP RESONANCES OBTAINED 

USING THE TUNNELING CONDITIONS AND FULL-WAVE 

SIMULATION FOR VARIOUS DIELECTRICS IN THE CHANNEL 

(εrw=5.95) 

 

ZOR [GHz] 

(Equivalent 
circuit) 

ZOR 
[GHz] 

(full-
wave) 

│δZOR│ 
[%] 

FP [GHz] 

(Equivalent 
circuit) 

FP 
[GHz] 

(full-
wave) 

│δFP│ 
[%] 

εrch=2 13.15 13.35 1.50 16.57 16.17 2.47 

εrch=3 11.06 11.14 0.72 14.90 14.75 1.02 

εrch=4 9.71 9.74 0.31 13.49 13.19 2.27 

 

 Table 3 gives an overview of the calculated resonance 

frequencies using the relations (16) and (17), and those 

obtained using the full-wave simulation, for five different 

channel heights. 

TABLE 3 

 COMPARISON OF THE ZOR AND FP RESONANCES OBTAINED 

USING THE TUNNELING CONDITIONS AND FULL-WAVE 

SIMULATION FOR VARIOUS CHANNEL HEIGHTS, bch (εrw=5.95 

AND εrch=3) 

 

ZOR 
[GHz] 

(Equivalent 
circuit) 

ZOR 
[GHz] 

(full-
wave) 

│δZOR│ 
[%] 

FP [GHz] 

(Equivalent 
circuit) 

FP 
[GHz] 

(full-
wave) 

│δFP│ 
[%] 

bch=0.1mm 11.13 11.20 0.63 15.46 15.40 0.39 

bch=0.2mm 11.07 11.14 0.63 15.02 14.92 0.67 

bch=0.254mm 11.06 11.14 0.72 14.90 14.75 1.02 

bch=0.3mm 11.05 11.14 0.81 14.82 14.64 1.23 

bch=0.4mm 11.08 11.15 0.63 14.74 14.46 1.94 

 

 It can be seen from Tables 1, 2 and 3 that the maximum 

error between the calculated and simulated ZOR and FP 

frequencies are less than 1.5% for the ZOR resonance, and 

less than 2.5% for the FP resonance, even in the case of 

pronounced non-homogeneity of the input waveguides, i.e. in 

the case when the ratio between the relative dielectric 

permittivities in the input waveguide and the channel is greater 

than 2, which is a very good agreement. Based on this, one can 

draw the conclusion that the relations (16) and (17) describe in 

a very good way the condition that is necessary to fulfill at the 

resonant frequencies for a non-homogeneous ENZ waveguide. 

VI. CONCLUSION 

 A simple method for modeling ENZ waveguide structures 

with the accent on the tunneling effect is proposed using the 

equivalent circuit approach. A condition necessary for the 

occurrence of resonances in these structures was derived, and 

it determines the position of ZOR resonance with the error less 

than 1.5%, and the position of the FP resonance with the error 

less than 2.5%, when compared with the values obtained by 

full-wave simulation. The reason for the partial discrepancy of 

the obtained results is a consequence of modeling the E-step 

discontinuity between non-homogeneous input waveguide and 

homogeneous channel using a shunt capacitor. Expression for 

the shunt capacitane is derived the under assumption that TE10 

mode exists in such a structure, which is valid if non-

homogeneity is not so obvious. This is confirmed by the 

increase of the error in predicting the resonant frequencies 

when a greater difference of relative permittivities of the 

dielectrics (greater non-homogeneity) in the input waveguide 

is introduced, and by the fact that the relative error in 

determining the FP resonance is always much higher than in 

the case of ZOR resonance. This happens because the 
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capacitance of the shunt capacitor increases rapidly with 

frequency, which particularly reflects on the FP resonance, 

which is always at a higher frequency compared to ZOR.  

 Thus, the change in waveguide height is not adequately 

modeled in the case of non-homogeneous input ENZ 

waveguides that were discussed here, and the possibility of 

modeling this kind of discontinuity by means of other 

equivalent circuit, especially in the case of pronounced non-

homogeneity (large difference in relative dielectric 

permittivities in the input waveguide, greater thickness of the 

channel or the existence of a large number of parallel channels 

connected to the same input waveguide) should be considered. 

Further efforts in this area should be directed towards this kind 

of research and towards studying the effects that arise after 

narrowing the channel, feeding the structure with a coaxial 

line, and after adding slots on the channel surface. 
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