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Abstract – Detection of precipitation based on the received 

signal level of commercial microwave links has been increasingly 

used in the mountain areas where meteorological radars have 

limited ranges, and placing rain gauges is impossible due to 

terrain morphology. In this paper, focused time-delay neural 

networks were trained to detect the appearance of precipitation 

based on the received signal level. The detailed testing of the 

trained artificial neural networks was done with the data 

obtained on the same link, which were not used for model 

development. The results show that the proposed method based 

on neural networks can be used for accurate precipitation 

detection in significantly shorter time comparing to the previous 

methods. 
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I. INTRODUCTION 

Accurate detection of precipitation using meteorological 

radars or rain gauges is almost impossible in complex terrains 

with rapid changes in altitude, such as in the case of 

mountainous terrain, because meteorological radars have 

limited ranges due to absence of line of sight in the valleys 

between mountain peaks and placing rain gauges is 

impossible due to terrain morphology. 

To overcome the foregoing problem, scientists have given 

the various theoretical descriptions and experimental proofs of 

the influence of precipitation on the signal attenuation, for 

years. Stratton gave the first theoretical description of the 

influence of precipitation on the signal attenuation in 1930  

[1], with a focus on determining of the unwanted interference 
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occurring under the influence of rain and fog during the 

propagation of very short radio waves. The first experimental 

proof of this effect is given by Mueller in 1946, where he 

studied the propagation of signals at frequencies of the 50 

GHz [2]. Later, during the seventies, researchers who have 

studied meteorological radars, came up with the idea to 

measure the amount of precipitation based on the signal 

attenuation that occurs along a microwave link in the 

frequency range 10-30 GHz [3]. Since then, several 

experiments with a purpose built microwave links have been 

performed, in order to determine the amount of precipitation 

occurring along the line [4]-[8]. Messer in 2006 showed that it 

is possible to measure the amount of precipitation based on 

the data obtained on the existing commercial microwave links 

[9]. The use of microwave commercial links has two main 

advantages: first, they are widespread over the world [10], and 

second, they operate at frequencies of tens of GHz, where 

precipitation is the most important factor in the occurrence of 

the signal attenuation. Therefore, this technique can be 

applied in areas with a small number of rain gauges, as in the 

case of mountainous areas and developing countries.  

 
Fig. 1. Signal attenuation of the microwave link, which occurs due to 

the precipitation occurrence 

Fig. 1 illustrates the signal attenuation of the microwave 

link, which occurs due to the precipitation occurrence. Signal 

attenuation that occurs on commercial microwave links have 

been studied theoretically and practically in order to detect the 

precipitation [11].  

The problem of precipitation detection can be solved by 

using the numerical method that is based on the detection of 

precipitation using information about the received signal level 

(RSL) of commercial microwave link [12]. The method 
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described in [12], is based on the fact that the raindrops scatter 

and absorb electromagnetic radiation at the microwave 

frequencies. However, very complex calculations require a lot 

of time, and the implementation of numerical method in real 

systems is limited.  

Neural-network computational modules have gained 

recognition as an unconventional and useful tool for use in the 

microwave technique [13]-[22]. In this paper we present a 

new method for the detection of precipitation using RSL of 

commercial microwave link, based on focused time-delay 

neural networks (FTDNN). In this way, the whole process of 

detection of precipitation is made more efficient. 

The paper is structured as following: after the Introduction, 

in Section II the procedure for detection of precipitation that 

occurs on microwave commercial link using numerical 

method [12] is described. The proposed artificial neural 

network (ANN) based method is described in Section III. In 

Section IV the numerical results of detection of precipitation 

are presented and discussed. The main conclusions are given 

in Section V. 

II. DETECTION OF PRECIPITATION USING 

NUMERICAL METHOD 

The problem of detection of periods with precipitation, 

based on the recorded data of RSL, can be viewed as a 

problem of pattern recognition of time series [12]. For a small 

data sets, detection of precipitation can be done by a human 

observer, who has experience in comparing RSL data with 

rain gauge records. However, for a large data sets, this is not 

feasible. Therefore, the numerical method for the detection of 

precipitation is developed [12]. This method is based on the 

algorithm which is described below.  

For each time step, t, a short section of the RSL data, R, 

with length 2L (a length of 256 points was found to perform 

best), is taken: 

( ) { | { ,..., }}kR t R k t L t L ,             (1) 

from which the Fourier transform is calculated via fast Fourier 

transform (FFT): 

F ( , ) FFT( ( ))f t R t ,                         (2) 

 where ω – is the Hamming window. 

As only the amplitude spectrum is of interest, power 

spectral density is used for further analysis: 

2

2

0

2 | ( , ) |
( ) =

L

S

f t
P f,t

F

F
,                            (3)             

where FS – is the sampling rate and 
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all Hamming window weights. It should be noted, that the 

received spectrum is just a different representation of the short 

time series section around t, only in the frequency domain. 

To simplify the detection of precipitation, a normalisation 

of the spectra has to be applied. The normalization is 

performed with respect to the mean power spectral density for 

dry period: 
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The normalized power spectral density varies depending on 

the frequency and the weather conditions at the link. In the 

case of appearance of precipitation, normalized power spectral 

density has a maximum value at lower frequencies, while in 

the absence of precipitation, the highest value of normalized 

power spectral density is obtained for higher frequencies.  

Since normalized power spectral density depends on the 

frequency, the normalized frequency at which the spectrum is 

divided into two parts, fdivide, is used. This frequency is 

determined empirically so that the data obtained by 

calculation best fit the data obtained using rain gauges. Sums 

of the normalized amplitudes in the case of low (f  ≤  fdivide) 

and high (f > fdivide) frequencies are calculated using the 

normalized power spectral density: 
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Detection of periods with precipitation is performed on the 

basis on the value of the difference between the sums of the 

normalized amplitudes in the case of low and high 

frequencies, Psum diff.  

sum diff sum low sum high( ) ( ) ( )P t P t P t .               (7) 

If the difference Psum diff  exceeds a certain threshold σ, the 

period is marked as wet, otherwise, the period is marked as 

dry: 

wet

dry
t  if

if
 sum diff

sum diff

( )

( )

P t

P t
.                  (8) 

III. PROPOSED NEURAL MODEL 

The numerical method proposed in [12], requires a lot of 

time, and this is in practice very undesirable. In order to 

reduce the time needed for the precipitation detection, here a 

new method based on ANNs is proposed. 

An ANN consists of a number of interconnected processing 

elements called neurons, and operates similar to natural 

nervous system. One of the simplest structures of the neural 

networks is a multi-layer perceptron (MLP) one, Fig. 2. 

Neurons are grouped in layers. Information from the 

environment is accepted by the neurons in the first, input 

layer. Outputs of all neurons in one layer are connected to all 
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the inputs of neurons from the next layer, and the outputs of 

neurons in the last layer are actually outputs of the network. 

Layers containing neurons that are not in direct contact with 

the environment are hidden layers. 

Information from the environment is brought to the inputs 

of the input neurons, and then processed by all neurons in the 

network. In this case, neurons in input and output layer are 

characterized by linear activation function and neurons in 

hidden layer are characterized by sigmoid activation function. 

In the process of the network training, the network parameters 

(connection weights and threshold activation function) should 

be determined so that difference between the desired response 

and actual response of the network is minimal. Determination 

of parameters is performed using an iterative optimization 

process. For the process of neural networks training presented 

in this paper, Quasi-Newton algorithm, which is a 

modification of backpropagation algorithm with higher order 

of convergence, is used [13]. 

 
Fig. 2. MLP structure 

A FTDNN is a special type of network, which consists of a 

feedforward MLP network having at the inputs, besides the 

input signal at the present moment, also the time-delayed 

values of the input signal [23]. FTDNN is a part of a general 

class of dynamic networks, called focused networks, in which 

the dynamics appear only at the input layer of a static 

multilayer feed-forward network.  

The proposed FTDNN model for the detection of 

precipitation is shown in Fig. 3. It is defined by the following 

expression: 

( ) ( ( ), ( 1),..., ( ))uQ t f A t A t A t n .                 (9) 

The value of the output variable that carries information 

about the appearance or absence of precipitation, Q(t), 

depends on the current value of the signal attenuation, A(t), 

calculated by using RSL [12], as well as on a series of past 

values of the signal attenuation, A(t-1),…, A(t-nu), where  

nu – is the number of input time-delays. 

In this case, the number of neurons in the input layer is 

equal to the number of input time-delays increased by one 

(nu + 1) and the number of neurons in the output layer is 

always equal to one. The number of hidden neurons cannot be 

a priori set and it is determined during the training by training 

 

and comparing networks with different number of hidden 

neurons. 

MLP

..
.

A t( )
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Fig. 3. The proposed neural model for detection of precipitation 

IV. NUMERICAL RESULTS  

Data used to train the neural networks were obtained at the 

link between Garmisch-Partenkirchen and Mount Wank, 4 km 

long, in the Alps, in the southern part of Germany, Fig. 4, in 

the period of 14 days, at the frequency of 18.7 GHz. The RSL 

recording was done every minute using a small storage device 

mounted on the towers with a resolution of less than 0.05 dB. 

This storage device (Cinterion TC65i) combined a Java virtual 

machine, two ADC (analog-to-digital converter) channels and 

a GSM module. The purpose of the Java virtual machine is to 

run adequate custom logging program. An ADC was used for 

the process of analog-to-digital conversation and its input was 

connected to the RSL monitoring voltage output of the link. 

Via the GSM module, the data was sent over the GSM 

network to the server for further processing. In order to 

deliver continuous data processing, the algorithm which is 

based on spectral analysis of time series was used [12]. 

Simplification of the analysis and processing of data was 

accomplished with the help of the database system. This 

database system consists of a MySQL backbone, which 

contains data tables. Besides RSL data, data tables also 

contain information about location, frequency and polarization 

of the microwave link, rain gauge data and meteorological 

data from weather station, which is located in Mount Wank. 

For the purpose of the parsing and exporting data to and from 

the database, python scripts were used. 

Information contained in the test set, which is used for 

testing the networks, is also obtained on the same link, at the 

same frequency, in a period of 37 days. 

In order to determine the network with the best 

performance, several neural networks with different number 

of input time-delays and different number of neurons in the 

hidden layer were tested. In this case, average test error (ATE) 

and correlation coefficient, r, [13] were used as the measure 

of quality of prediction. 

Table I shows the results of testing of different neural 

networks with one hidden layer, where n is the number of 

neurons in the hidden layer. As can be seen from the Table I, 

the network with the best performance is a network with 10 

input time delays and 10 neurons in the hidden layer 

(ANN13). This network was chosen as the final model and all 

further results refer to it. 
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Fig. 4. Link between Garmisch-Partenkirchen and Mount Wank, 4 km long, in the Alps, in the southern part of Germany 

TABLE I 

TEST RESULTS 

 

Neural 

network 

nu n ATE [%] r 

ANN1 1 10 1.4311 0.9536 

ANN2 1 30 2.0288 0.9340 

ANN3 1 50 3.5104 0.8850 

ANN4 3 10 9.4000 0.6766 

ANN5 3 30 9.7900 0.6615 

ANN6 3 50 9.6100 0.6685 

ANN7 5 10 1.9067 0.9379 

ANN8 5 30 1.8089 0.9411 

ANN9 5 50 3.5313 0.8839 

ANN10 8 10 9.3600 0.6779 

ANN11 8 30 9.4300 0.6752 

ANN12 8 50 9.4800 0.6733 

ANN13 10 10 1.1095 0.9647 

ANN14 10 30 1.9012 0.9381 

ANN15 10 50 4.2237 0.8606 

ANN16 13 10 9.4600 0.6735 

ANN17 13 30 10.1400 0.6476 

ANN18 13 50 9.8400 0.6589 

ANN19 15 10 8.5300 0.7081 

ANN20 15 30 10.3200 0.6403 

ANN21 15 50 10.6800 0.6263 

ANN22 18 10 9.6300 0.6664 

ANN23 18 30 9.6200 0.6670 

ANN24 18 50 10.3300 0.6402 

Fig. 5 illustrates the results of precipitation detection for a 

period of 37 days done by the method described in [12]  

(Fig. 5(a)) in comparison to the results obtained by the 

proposed neural model (Fig. 5(b)). It is important to note that 

the results refer to an RSL sequence not used for the model 

development.  

As noted above, the variable Q carries information about 

the presence or absence of precipitation, i.e. it can takes only 

two values, 0 or 1, in certain points in time (the signal was 

sampled every minute). In other words, variable Q is a 

discrete-time and discrete-amplitude variable. The absolute 

error, shown in Fig. 5(c), is the absolute value of the 

difference between the variable Q obtained by the previous 

numerical method and the value of the variable Q obtained by 

the proposed neural model. Therefore, the obtained values of 

the absolute error indicate a wrong detection of precipitation 

in a certain point in time. If the value of the absolute error is 

equal to 1, a wrong detection of precipitation was made at that 

moment. Otherwise, if the value of the absolute error is equal 

to 0, an accurate detection of precipitation was made at that 

moment. To measure the quality of a neural model, it is more 

suitable to use the ATE. The obtained value for ATE of 

1.1095%, actually means that, on average, each ninetieth 

value of absolute error is equal to 1 (i.e. each ninetieth value 

of the variable Q, which is obtained by using the neural 

model, is different from the one obtained by the numerical 

method), which can be considered as quite satisfactory. 

As an additional illustration, Fig. 6 shows a part of the 

results shown in Fig. 5, for a period of 6 minutes during the 

first day, where the RSL is sampled every minute. Based on 

the values of the absolute error, shown in Fig. 6(c), it can be 

seen that accurate detection of precipitation was carried out in 

5 of 6 points in time. 
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Fig. 5. a) Values of the variable Q obtained by the proposed method in [12], b) Values of the variable Q obtained by the proposed neural 

model, c) Absolute error 

 

 
Fig. 6. a) Values of the variable Q obtained by the proposed method 

in [12], b) Values of the variable Q obtained by the proposed neural 

model, c) Absolute error 

V. CONCLUSION 

This paper presents development and validation of model 

for precipitation detection using focused time-delay neural 

networks. Precipitation detection was carried out based on the 

received signal level. For training and testing of the networks, 

the measured data obtained at the link between Garmisch-

Partenkirchen and Mount Wank, and precipitation detection 

results using one of the previously proposed models, were 

used. Several neural networks with different number of input 

time-delays and different number of neurons in the hidden 

layer were trained and tested with the data obtained on the 

same link, but not used for model development. Selecting the 

network with the best performance was made based on the 

parameters that are used to determine the quality of the tested 

network response. Once the model is developed, the presence 

of the precipitation is determined by calculation of the neural 

network response for the RSL sequence, which is significantly 

faster than the previously proposed numerical method, making 

the process of the precipitation detection more efficient. 
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