
Mikrotalasna revija Septembar 2013. 

  26

Miloš Davidovi� is with the School of Electrical Engineering, 

University of Belgrade, 11120 Belgrade, Serbia (PhD student) and 

also with Laboratory for radiation measurements 100, Vin�a Institute, 

University of Belgrade, 11001 Belgrade, Serbia, E-mail: 

davidovic@vinca.rs 
1An�elija Ili� is with the Innovation Center, School of Electrical 

Engineering, University of Belgrade 11120 Belgrade, Serbia E-mail: 

andjelijailic@ieee.org  
2Miodrag Tasi� is with the School of Electrical Engineering, 

University of Belgrade, 11120 Belgrade, Serbia E-mail: tasic@etf.rs 
3Branislav Notaroš is with the Department of Electrical and 

Computer Engineering, Colorado State University, Fort Collins, CO 

80523-1373 USA E-mail: notaros@colostate.edu 
4Milan Ili� is with the School of Electrical Engineering, University 

of Belgrade, 11120 Belgrade, Serbia, and also with the Department of 

Electrical and Computer Engineering, Colorado State University, 

Fort Collins, CO 80523-1373 USA E-mail: milanilic@etf.rs

A Comparison of Modal Electromagnetic Field 

Distributions in Analytical and Numerical Solutions

Miloš Davidovi�, An�elija Ili�
1
, Miodrag Tasi�

2
, Branislav Notaroš

3
, Milan Ili�

4

Abstract – In this paper, a detailed comparison of modal 

electromagnetic field distribution in two canonical microwave 

cavities, obtained via analytical and recently introduced 

numerical approaches, is presented and discussed. While the 

analyzed problems, namely, those of a spherical cavity and a 

ridged cavity are relatively simple, they still provide valuable 

benchmarks for novel numerical methods, allowing for early 

estimates of accuracy, efficiency, and convergence properties of 

the method. Furthermore, study of field distributions may 

provide useful insights about strengths and weaknesses of the 

approximating vector spaces which are otherwise not possible.  
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I. INTRODUCTION

Error estimates are a very important part of any kind of 

analysis performed in a modern electromagnetic (EM) 

engineering practice, especially for widely accepted methods 

such as finite element method (FEM) [1]. These kinds of 

estimates are also needed for all novel methods, whose 

properties are not yet studied in detail. Modern computational 

EM is largely oriented toward higher order methods, excellent 

survey of which can be found in [2]. Unfortunately, higher 

order methods require much more involvement from 

practicing engineers. Therefore, success (or failure) of EM 

engineering projects will still often be strongly determined by 

proficiency of practicing engineers in adequate formulation of 

the problem, i.e., use of sufficient number of details during 

geometrical modeling and meshing, setting reasonable 

prescribed accuracy, and interpretation of obtained numerical 

results. These skills are best honed by performing FEM 

known problems, which present reasonable amount of 

difficulties encountered in practice (such as curved geometry, 

singular fields) but are not overwhelming. It is therefore 

desirable for any novel method, to be tested on well 

understood, but not trivial problems. With this in mind, the B-

spline method for efficient analysis of three dimensional (3-D) 

microwave cavities, recently introduced in [3], was tested in 

terms of accuracy and efficiency. Testing of accuracy was 

taken beyond the usually performed eigenvalue test, and also 

includes testing of eigenfield solution. The analyzed method 

enables completely independent higher order modeling of 

both geometry and electromagnetic fields; the geometry 

modeling is done using trivariate B-splines (by exploiting 

their excellent approximation capabilities), while the field 

modeling is done using hierarchical higher order polynomial 

vector basis functions [4] (thus enabling very accurate and 

efficient approximation of fields). It is worth noting that while 

some other methods for geometry modeling may represent 

some forms of geometry more accurately ( for example 

rational Bézier curves and non-uniform rational B-splines or 

NURBS [5], [6] can model conic sections exactly), they may 

also require specialized quadrature rules when used in 

numerical EM. 

In this paper, we revisit the B-spline FEM modeling 

introduced in [3] and give additional insight in the 

convergence of the modal field solutions. Section II of the 

paper presents the B-spline modeling of solids in general as 

well as details of solid modeling of spherical and ridged 

cavity in particular. In Section III, the FEM field-expansion 

basis functions are described. In Section IV, numerical results 

are discussed including analysis of modal field distributions.   

II. B-SPLINE SOLID MODELING 

Presentation in this Section mainly follows [3] regarding 

general B-spline solid modeling, with additional details on 

analyzed examples of the spherical and the ridged cavity.  

A. Univariate B-splines 

Since solid modeling requires utilization of trivariate 

splines, and they are defined using univariate splines, some 

basic univariate splines definitions are in place. Note 

however, that while univariate spline definitions that will be 

given below are constructive in nature, i.e., they describe one 

possible algorithm for construction of splines, it is more 

advisable to implement more stable and efficient algorithms 

[7]. We use the following recurrent formula to define the B-

spline functions: 
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where ni ≤≤0 , 0>n , and ( )mnuuuU +,,,= 10 �  is a non-

decreasing sequence of real numbers. U is called the knot 

vector of the corresponding spline family, and can be used to 

flexibly increase or decrease the number of splines and 

continuity of splines over knot vectors with multiplicities. 

Multiplicities, i.e., repetition of knots in knot vector, can lead 

to non-defined terms in Eq. (1), and if division by zero should 

occur when algorithm from Eq. (1) is followed, that term is 

replaced by zero. The function Bi,m(u) is called the i-th B-

spline of order m and degree m-1 with respect to the knot 

vector U . The following equations hold for a standard 

clamped uniform knot vector: 
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where the term “uniform” refers to uniform spacing between 

internal knots, and the term “clamped” is due to end knot 

multiplicities.  

B. Trivariate Splines and Hexahedron Parametrization 

Using previously defined univariate B-splines, we can 

define a parametric hexahedron introducing a mapping 

),,(),,(: zyxwvu →r
, 

[ ] [ ] [ ]1,11,11,1),,( −×−×−∈wvu

(cubical parent domain), such that it is interpolatory at the 

specified points of the global Cartesian space. To simplify the 

parameterization (without loss of generality) we employ the 

same order of B-splines ( mmmm wvu === ) and the same 

knot vectors in all directions. A point within a hexahedron is 

thus defined by 
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where mkmjmi BBB ,,, ,,  are the splines over the same knot 

vector and kji ,,C  are the position vectors of the control 

points, found by solving the following system of equations: 
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where 3)1( += nK , and with lr  and ),,( lll wvu  being the 

(global) position-vectors of the interpolation points of the 

solid and their (local) parametric coordinates, respectively. 

Note that other parameterization formulations are also 

possible (but slightly less simple). For example, Eq. (4) can be 

modified to include various additional conditions, such as 

prescribed tangent at certain points, etc. The choice of 

interpolation points and a knot vector depends on the 

particular solid that needs to be parameterized, and will be 

presented next. 

C. Solid Modeling of the Spherical and Ridged cavity 

Spherical cavity can be modeled as a solid in a number of 

ways (even when restriction to B-spline solid modeling is 

made). Note however, that utilization of polynomial models 

(or piece-wise polynomial) models are preferred, since 

rational functions would require specialized quadrature 

algorithms. We opted for the method described in previous 

section, with the choice of parametric and Cartesian points 

given by a simple analytical mapping [3]. This way, it is 

possible to have tunable geometrical accuracy, which is very 

important, especially when doing pointwise comparisons of 

the field quantities. Two solid spline models were used for the 

cavity, a more “crude” model, having only 125 interpolation 

points ( 4=n ), and geometrically refined model, having 

1,000 interpolation points ( 9=n ).  

Fig. 1 shows the spline functions used in the first model of 

the spherical cavity and parametric coordinate lines in the w=0 

cut. 
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                          (a)                       (b) 

Fig. 1. (a) B-spline functions of order m = 5 used for the entire-

domain modeling of a spherical cavity with the flat knot vector 

)1,1(−  and (b) u-v coordinate lines in the w=0 cut 

Note that both models are very precise and that visual 

inspection would not reveal any difference between the two. 

However, as we will show, eigenfield calculations are very 

sensitive and will reveal considerable differences between the 

two models. 

Geometrical modeling of the ridged cavity is significantly 

simpler, partly because the cavity is swept geometry. Since, 

for simplicity, we use the same spline family in all three 

parametric directions, and 4 points are needed to describe the 

ridge, we will need a total of 4
3
=64 interpolation points. Fig. 2 

shows the interpolation points in one w-cut and the spline 

family used in all three parametric directions. 

    
                       (a)                              (b) 

Fig. 2. (a) Interpolation points in one w-cut and (b) B-spline family 

adopted for parameterization of the ridged cavity 
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These two examples clearly show flexibility of B-spline 

modeling, as both arbitrary order and arbitrary number of 

functions can be used along a parametric direction.   

III. FIELD EXPANSION 

Approximation of electric field is given (within each 

hexahedral element) as: 

e
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where e
lf are higher order vector basis functions with a total 

of eN  unknown field-distribution coefficients e
lγ  in the 

element. The basis functions are curl-conforming hierarchical 

polynomials of arbitrary field-approximation orders e
uN , e

vN , 

and e
wN  ( e

uN , e
vN , e

wN ≥  1) in the e-th element, which, for 

the reciprocal u-directed field vector, are given by: 
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where 
eℑ  is the Jacobian of the covariant transformation, and 

e
ua , e

va , and e
wa  are the unitary vectors along the parametric 

coordinates of the element and analogously for the v- and w-

directed basis functions. 

Field-expansion orders e
uN , e

vN , e
wN  in Eq. (6) are 

entirely independent from each other, and can be combined 

independently for the best overall performance of the method. 

Furthermore, because the basis functions are hierarchical 

(each lower-order set of functions is a subset of all higher-

order sets), all of the parameters can be adopted 

anisotropically in different directions within an element, and 

nonuniformly from element to element in a model. Note that 

indices from Eq. (6) are “collapsed” into one index in Eq. (5). 

This  scheme is commonly used when members of a set must 

be accessed in linear fashion. One well known example is 

from computer science when multidimensional arrays must be 

arranged in a linear sequence in memory. 

It is interesting to note that basis functions defined by 

Eq.(6) can be classified into several different groups which 

play different role in FEM formulation. The first group 

consists of functions which have tangential component that 

vanishes on the element boundaries. In electric field 

approximation they do not directly participate in enforcement 

of boundary conditions. The hp-FEM literature commonly 

referes to these functions as the bubble functions. The second 

group consists of functions which have non vanishing 

tangential component on element boundaries, and are known 

as the face functions. These functions participate in 

approximation of boundary conditions. Note that with 

functions defined in Eq. (6) it is sufficient to enforce 

continuity of face functions, and no special algorithms need to 

be devised for edge, face, and vertex functions.   

After Galerkin testing procedure, details of which can be 

found in [3], a generalized eigenvalue problem is obtained. 

Eigenvalues and eigenvectors (which come in form of 

coeeficients in Eq. (5)) are obtained as a solutions. Modal 

eigenfield is than easily obtained from Eq. (5). 

IV. NUMERICAL RESULTS

For cavity problems, it is usually most important to obtain 

eigenfrequencies as accurately as possible. However, modal 

fields are also of interest. In the FEM algorithms the 

convergence is usually evaluated by comparison of S-

parameters (for driven solutions), changes in overall scattering 

energy (for incident wave problems) or resonant frequencies 

(for eigenmode solutions) from pass to pass [8]. These 

quantities represent the results of the model as a whole, and 

usually converge more rapidly, i.e., with fewer unknowns, 

than the approximation of fields at individual points. 

However, it is interesting to study convergence of field 

solutions along with the convergence of eigenvalues, in order 

to gain better insight into needed number of unknowns, i.e., 

order of approximation, for specified accuracy. It is not 

uncommon for inexperienced engineers to set the prescribed 

accuracy too high, therefore considerably lengthening 

simulation times without any real benefit. 

The electric field distribution for the dominant spherical 

mode obtained by the analytical solution [9] and by the entire 

domain B-spline solution, is given in Figs. 3 and 4, 

respectively. The field solutions are plotted directly from the 

computed corresponding eigenvectors, thus they are 

practically identical except for the difference in the 

eigenvector normalization (which is understandable) and 

except near the sphere “edges” (Fig. 4) where the entire-

domain B-spline model has a discontinuous tangent (which is 

also easily appreciated and can be improved by adopting 

higher order geometrical model or h-refinement). 

               (a)                         (b)                (c) 

Fig. 3. Analytical solution: magnitudes of (a) x-, (b) y- and (c) z-

components of the electric field for the first 

mode

            (a)                         (b)                (c) 

Fig. 4. B-spline solution (108 unknowns, “crude” geometry model): 

magnitudes of (a) x-, (b) y- and (c) z-components of the electric field 

for the first mode 
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Note that, in this case, any attempt to quantify the error of the 

field distribution throughout the element volume would be 

strongly biased by the significantly higher errors near these 

“edges”. 

However, to establish an estimate of the accuracy and 

convergence of the solution of the electric field, when the 

number of unknowns is increased (by p-refinement), we 

compute the RMS error of the magnitude of the B-spline field 

solution relative to the analytical solution for the two models 

of spherical cavity in 1,016 and 1,736 surface points for the 

crude and refined models, respectively. Numerical results for 

the RMS error of the dominant mode eigenfield for the two 

solid models, along with the average eigenfrequency error for 

the first 11 modes, are given in Table I. 

Results from Table I can be interpreted in the following 

way. Looking at the convergence of the eigenfrequencies, it is 

clear that both models have excellent convergence, i.e., error 

decreases monotonically and rapidly with the increase of the 

number of unknowns. Situation is less clear regarding modal 

field convergence. 

TABLE I 

ERROR IN CALCULATING EIGENFREQUENCY AND MODAL FIELD 

IN A SPHERICAL CAVITY

 |Error| [%] 

  Average eigenfrequency error (11 modes) 

Crude model 2.8666 0.2011 0.1098 0.0501 

Refined model 2.8179 0.1470 0.0661 0.0097 

RMS error in modal field (1st mode) 

Crude model 20.79 20.60 40.63 17.30 

Refined model 10.29 9.70 5.11 5.08 

Unknowns 108 240 450 756 

It is evident that the error in modal field is several orders of 

magnitude larger than the error in eigenfrequencies. Also, 

with the refined model, the convergence is monotonic. On the 

other hand, the crude model shows high error despite 

excellent eigenvalue convergence. This can be attributed to 

the offset between the ideal spherical cavity used for exact 

analytical solution, and crude spline model of the sphere. 

Hence, there is effectively a significant mismatch of points 

when point-by-point comparison of fields is applied in 

presence of the rapidly changing fields (as can be seen from 

Figs. 3 and 4). 

The ridged cavity (see [3] for more detailed figure of the 

cavity), is less grateful for comparison of modal field 

solutions because there is no readily available analytical 

solution. Hence, for the ridged cavity example, the B-spline 

solution and the reference numerical HFSS solution, for the 

dominant mode electric field distribution, are presented in the 

large number of sampling points in Fig. 5, where very similar 

distributions of fields can be observed. This is also confirmed 

by Fig. 6, where magnitude of the field is again plotted, but 

without 3D positional data, in order to include internal points 

in the comparison. Table II shows the relative error of the 

computed resonant free space wave number k0 for the first 9 

resonant modes. 

                              (a)                           (b) 

Fig. 5. Magnitude of the electric field of the first mode of the ridge 

taken in the large number (27,000 points) of sampling points: (a) 

HFSS and (b) B-spline solutions 

As for the modal field solution, RMS “error” for the first 

mode is 28.88%, when calculated in 27,000 volume points. 

This is again several orders of magnitude larger than the error 

in computed eigenfrequencies. This can be attributed to the 

fact that p-refined basis functions used in B-spline model are 

too smooth to model the field near reentrant corners of the 

ridge, where the field is theoretically singular. Furthermore, 

since there is no available exact solution, quantification of the 

error strongly depends on the HFSS solution (and its 

convergence properties, number of adaptive passes, and initial 

mesh seeding).  
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                           (a)    (b) 

Fig. 6. Plot of magnitude of the electric field of the first mode of the 

ridge, without 3D positional data, a) HFSS, b) B-spline 

TABLE II 

ERROR IN CALCULATING 0k IN THE RIDGED CAVITY 

Mode 
HFSS 

0k ][cm 1−

B-spline 

|Error| [%] 

Unknowns 3,017 t 276 

1 5.091 0.0393 

2 7.469 4.0969 

3 7.853 0.4202 

4 7.878 5.0774 

5 8.019 3.8035 

6 8.863 2.6853 

7 8.9 4.3820 

8 9.087 6.8119 

9 10 3.9000 
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