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Abstract – Efficient transmission of compressed images over 

wireless channels is a critical issue for several real-time 

applications. Almost similar problems arise with compressed 

sensing image transmissions and it poses significant challenges in 

terms of data integrity as well as efficient utilization of available 

bandwidth. In recent years, compressed sensing has evolved as a 

promising technique for sparse signal recovery, allowing the 

reconstruction of images from highly compressed measurements 

and efficient channel utilization. In this study, we investigate the 

communication of compressed sensing images over a binary 

erasure channel (BEC), a common channel model with random 

packet losses and it has been observed that the compressed 

sensing also takes care of the channel perturbations to some 

extent along with data compression to improve channel 

utilization. This paper proposes an inherent framework of 

compressed sensing along with its reconstruction technique to 

recover original images communicated over a binary erasure 

channel (BEC) without using any error-correcting codes. 

Keywords – Sounding rocket, Conformal antenna, Hilbert 

curve, U-slot. 

I. INTRODUCTION 

The transmission of images over wireless channels is a 

common requirement for several real-time applications, 

including wireless visual sensor networks, video surveillance 

via fixed or drone cameras, remote imaging, smart agriculture, 

and video calls via 4G and higher generation cellular 

networks, etc. [1, 2, 3]. It poses two important challenges in 

minimizing energy requirements at the device level by 

generating less compressed data and maximizing bandwidth 

utilization for achieving reliable and high-quality image 

communication [4, 5, 6]. Compressed sensing (CS) has 

emerged as a powerful technique for acquiring and 

reconstructing sparse signals, such as images, from a reduced 

set of measurements. CS exploits the fact that many natural 

images exhibit sparsity or compressibility in certain domains, 

allowing for significant data reduction without compromising 

image quality [7, 8]. This makes compressed sensing an 

attractive approach for image communication, as it enables 

efficient transmission of compressed measurements that can 

be later reconstructed into high-fidelity images. However, 

when transmitting compressed measurements over unreliable 

channels, such as the binary erasure channel (BEC), 

additional challenges arise [9]. The BEC model assumes that 

packets can be either correctly received or erased, without any 

bit errors. 

This channel model is commonly used to represent packet 

losses in wireless networks. The erasures introduced by the 

BEC can result in the loss of crucial information required for 

image reconstruction, leading to significant degradation in 

image quality. To address these challenges, various techniques 

have been proposed to enable reliable image communication 

using compressed sensing over the BEC. These techniques 

often combine error protection methods, such as forward error 

correction, with compressed sensing algorithms to enhance 

the reliability of the transmission. By introducing redundancy 

into the compressed measurements, it becomes possible to 

recover lost packets and improve the reconstruction quality, 

even in the presence of erasures. Through extensive 

simulations and performance evaluations; we demonstrate the 

effectiveness of our proposed scheme in achieving satisfactory 

reconstruction results and providing better compression 

performance with images. The following is a summary of the 

primary contributions of the manuscript. 

• An efficient communication technique based on 

compressed sensing has been proposed over binary erasure 

channels. 

• Unlike any other CS research papers, this paper 

correlates the losses occurring in the compressed sensing 

using binary erasure channels. Proposed compressed sensing 

model shows improvement in reliability as well as efficient 

transmission in terms of improved compression ratio. 

• This paper also proposes an analytical expression for 

PSNR over binary erasure channels for compressed sensing 

images based on empirical results. 

In this paper, we present the details of our proposed 

framework, including the compressed sensing method, binary 

erasure channel, and the reconstruction process in sections I 

and II. We then evaluate the performance of the proposed 

scheme under various channel conditions in section III. 

Finally, in section IV. we discuss the implications of our 

findings and highlight potential future directions for research 

in image communication over unreliable channels. 

II. COMPRESSED SENSING AND BINARY  

ERASURE CHANNEL 

A. Compressed sensing 

Compressed sensing is a method of signal processing that 

was introduced in 2006 [5-9]. Compressed sensing defined by 

 y = ϕ x (1) 

https://doi.org/10.18485/mtts_mr.2025.31.1.9
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where ϕ represents a measurement matrix of dimensions M × 

N and x denotes the signal. The measurement matrix ϕ can be 

created using a chaotic map and a random Gaussian matrix. In 

this paper, we have used Teoplitz diagonal measurement 

metrics to measure the signal. In this work, we used the 

conventional orthogonal matching pursuit (OMP) algorithm 

for efficient and reliable reconstruction of the signal [10, 13]. 

The proposed Teoplitz diagonal measurement matrix (TDM) 

is based on the Toeplitz matrix that only keeps the entities in a 

diagonal line set as ’1’. The construction of TDM is shown 

below.                        

 Φ𝑖,𝑗 = { 0,𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 1  𝑓𝑜𝑟  𝑖=𝑗

 (3) 

where Φ𝜖𝑅𝑀×𝑁, i 𝜖 (1, 𝑀), 𝑗 𝜖 (1, 𝑁). This is the proposed 

TDM measurement matrix. Equation (3) describes a Toeplitz 

diagonal measurement matrix with specific conditions on its 

elements, where the elements are defined based on the indices 

i and j. The Toeplitz matrix is characterized by constant 

values along its diagonals, [10,11]. So, Compressed sensing 

takes advantage of sparsity in the signal. By using a Toeplitz 

diagonal measurement matrix, we ensure that certain sparse 

structures in the signal are maintained, making reconstruction 

easier. 

             

 

B. Binary erasure channel 

The binary erasure channel is a type of communication 

channel used in information theory to model a variety of real-

world communication scenarios, including wireless 

communication and data storage systems. In this channel, bits 

transmitted over the channel can be either correctly received 

or lost with a certain probability, denoted by p, or they can be 

intentionally erased. The binary erasure channel is widely 

used in the design and analysis of communication systems. 

Because it provides a simple and intuitive model for studying 

the behaviour of communication channels. One of the key 

properties of the binary erasure channel is that it is memory-

less, which means that each transmitted bit is independent of 

the others. This property simplifies the analysis of the channel 

and allows us to use statistical methods to study the behaviour 

of the channel [9, 10, 11, 12]. In particular, we can use the 

concept of entropy to quantify the amount of uncertainty or 

randomness associated with the bits transmitted over the 

channel. One of the most important applications of the binary 

erasure channel is in coding theory. It is used in the study of 

error-correcting codes that can be used to transmit information 

over noisy communication channels. Error-correcting codes 

are designed to protect transmitted data from errors and loss 

caused by noise or other factors.  

The binary erasure channel is particularly well suited for 

the analysis and design of error-correcting codes because it is 

a simple and tractable model that captures many of the 

essential properties of real-world communication channels. 

 
Fig. 1: Binary erasure channel 

 

The binary erasure channel is also used in other areas of 

communication theory, such as coding for network coding, 

where coding techniques are used to increase the efficiency of 

communication networks. Network coding is a method of data 

transmission in which data packets are combined at 

intermediate nodes in the network to increase the throughput 

of the network. Binary erasure channels are often used in the 

analysis of network coding schemes because they provide a 

simple and intuitive model for studying the behaviour of the 

network. In a Binary Erasure Channel (BEC) as shown in Fig. 

1, the communication system transmits binary input symbols 

(0 or 1), and the output can be one of three symbols: 0, 1, or 

an erasure symbol (e). The erasure symbol indicates that the 

receiver could not determine the transmitted bit due to various 

reasons, such as noise or interference. The capacity  𝑪𝑩𝑬𝑪  of 

a BEC with an erasure probability (ε) is given by: 

 𝐶𝐵𝐸𝐶   = 1 – ε (5) 

This means that the higher rate at which data can be reliably 

communicated over the channel, considering the erasures, is 

(1 - ε) bits per channel use. The erasure probability (ε) 

quantifies the fraction of bits that are erased during 

transmission. For example, if (ε = 0.2), then 20% of the 

transmitted bits are expected to be erased. Elias demonstrated 

that random codes with rates very close to 𝑪𝑩𝑬𝑪 can be 

decoded on the BEC with a significantly low probability of 

error by employing maximum likelihood (ML) decoding. The 

BEC allows for the reliable transmission of information at 

rates up to 1 - ε. Using random coding techniques combined 

with maximum likelihood decoding enables the system to 

achieve these rates while maintaining low error probabilities. 

This makes the BEC a useful model for understanding 

communication systems where data may be lost or erased, and 

it highlights the importance of coding and decoding strategies 

in ensuring reliable information transfer. Algorithm 1 shows 

the Compressed Sensing Signal Recovery algorithm takes an 

input signal x and a measurement matrix ϕ of size M×N. The 

algorithm then simulates transmission through a Binary 

Erasure Channel, aiming to output the recovered original 

signal X′.  

C. Capacity of the BEC 

The capacity of the BEC denotes the highest rate at which 

data may be transmitted reliably over the channel. In simpler 

terms, it represents the highest achievable data transmission 

rate without any errors or loss of information. Consider a 

scenario where We have a message of length L that is encoded 

into a longer data of length n, with both L and n being positive 

integers. It is logical to have n greater than L to accommodate 

for the erasures that can occur in the BEC. In our 

communication model, we aim to transmit encoded 
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information through the  BEC without any feedback, meaning 

the receiver cannot notify us about which bits were erased 

during transmission. In this scenario, we assume there are no 

transmission errors, and the receiver gets a sequence of n bits 

that includes L bits of actual data. The ratio R:= L/n is defined 

as the code rate, indicating the sequence of information bits 

per received symbol. Let X represent input data and Y output 

data. Each code consists of an encoding function fn: XL → Xn 

and a decoding function gn: Yn→ XL, which guides us on how 

to decode the channel's output. The input data is binary X: = 

{0, 1}, while the output data is Y: = {0, 1, e}, where e is an 

erased bit in BEC. We must also consider the noise in the 

channel. Let X(n):= (X1,..., Xn) denote the n bits input into the 

channel, and  Y(n):= (Y1, ..., Yn) the n bits output from the 

channel. The higher probability of error in the code is given 

by equation (6), which serves as a key metric. 

 𝑝𝑒(𝑛): = 𝑚𝑎𝑥𝑃(𝑔𝑛(𝑌(𝑛) ≠ 𝑥|𝑋(𝑛)𝑓𝑛(𝑥)), x𝜖𝑋𝐿 (6) 

for evaluating the performance of our coding strategy. This 

formulation allows us to evaluate the effectiveness of our 

decoding function 𝑔𝑛 under the constraints imposed by 

erasures, guiding future improvements in coding techniques to 

enhance reliability in communication over noisy channels. We 

are looking at the higher probability that the decoding 

function, when applied to the channel's output, does not match 

the originally intended message, with this maximum being 

considered across all possible input messages.  

ALGORITHM 1 MODIFIED COMPRESSIVE SENSING METHOD FOR 

BINARY ERASURE CHANNEL 

Input:Input Signal x, Measurement matrix ϕ of size M×N  

Output: Recovered Original signal X’ 

1. Initialize: 

- Set measurement y as an empty array 

2. Sparse representation 

a. Generate sparse signal using DWT basis transform x: 

b. Compute y: 

- Multiply the sensing matrix ϕ by the signal x:  

                  y= ϕ .x 

3. Transmission through Binary Erasure Channel 

a. Generate the modulated signal y 

             1 = 1 - 2y;(BPSK Modulation) 

b. Erasure of Probability = ε 

Erased Indices = rand (size(y1)) ¡ erasure of Probability  

c. Demodulated signal = (real(erased In- dices)¡0);(BPSK 

demodulation) 

3. Perform sparse recovery: 

a. Solve the optimization problem to recover the sparse 

signal X’: 

Minimise ||x||0 subject to y1 = ϕ. x′

4. Obtain the recovered Original signal X’ 

end 

 

Fig. 2: Block diagram of compressed image communication based on 

compressed sensing over a binary erasure channel 

We define the rate R as attainable for the channel if, for every 

positive integer n, there are encoding and decoding functions 

(fn, gn ) that transform messages of length L into messages of 

length n. If the probability. P
(n) 

-> 0 approaches 0 as n 

increases, which means we can transmit without errors in the 

long run. The maximum rate that can be achieved is called the 

channel's capacity. 

D. Proposed analytical expression for PSNR over binary 

erasure channel 

In this subsection, we obtained the analytical expression for 

PSNR based on empirical results obtained. The relationship 

between PSNR and the probability of erasure (ε) is given by: 

 PSNR = − 10 log10 (ε) + β (7) 

where β is a constant ranging from 6 to 10.15 based on 

obtained empirical data in our simulation. This relationship 

shows that as the probability of erasure increases, PSNR 

decreases, indicating lower image quality. In this equation, 

PSNR serves as a measure of image quality expressed in 

decibels (dB), with higher PSNR values indicating better 

image quality. The variable ε represents the probability of 

erasure, indicating the likelihood of data loss or corruption 

during transmission; a higher ε corresponds to a greater risk of 

data loss. The constant β adjusts the relationship between 

PSNR and ε, typically ranging from 6 to 10.15, thus 

influencing the baseline PSNR values based on specific 

channel conditions. The equation highlights that PSNR is 

inversely proportional to ε. As the probability of erasure 

increases—indicating more data loss—the PSNR decreases, 

reflecting lower image quality. This relationship underscores 

the importance of minimizing data loss during the 

reconstruction process. 

III. RESULT AND DISCUTION 

In this section, we illustrate the results of our proposed 

model to show the ability of the compressed sensing method 

and consequently its effect on the reconstruction process in 

wireless communication with a binary erasure channel and the 

block diagram shown in Fig. 2. The proposed model used a 

binary erasure channel for transmitting the data but this is a 

worst-case scenario. In the beginning, we experimented by 
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taking four test images, namely Cameramen, Lena, Boat, and 

Peppers for end-to-end communication with binary erasure 

channels with different probabilities of erasure (ε). The 

reconstruction quality is measured by different parameters like 

Peak Signal to Noise Ratio (PSNR), NPCR, MSE, and SSIM 

[15-21] between the reconstructed image and the original 

image. The relative various performance analyses are given 

below. We examine the system performance with subjective 

received images visualization, different probability of erasure, 

and peak-signal-noise ratio, respectively. In the simulation, 

the image in the sparse representation is acquired using TDM 

measurement matrices, with the OMP algorithm utilized for 

reconstruction. The reconstruction outcomes for various 

images, evaluated by Peak Signal to Noise Ratio, are 

displayed in Fig.3. Fig. 3 shows that Pepper's reconstructed 

images get better performance than the others. And also 

shows a high compression ratio that is 0.2 we get a minimum 

PSNR of 22.2351 dB with the Boat image and a maximum 

PSNR of 33.1262 dB with the Peppers image.  

 

 

Fig 3. Comparison of Peak Signal-to-Noise Ratio (PSNR (dB)) 

values for reconstructed images obtained through Compressed 

Sensing over a binary erasure channel with a fixed erasure 

probability of 0.01 

 

 
Fig. 4. Comparison of the Number of pixel change rate (NPCR) 

values for reconstructed images using Compressed Sensing over a 

binary erasure channel with a fixed probability of erasure set at 0.01 

 

A higher PSNR value indicates a better reconstruction quality, 

as it implies a smaller amount of distortion or noise in the 

reconstructed signal at the probability of erasure 0.01. The 

Number of Pixels Change Rates (NPCR) and the Unified 

Average Changing Intensity (UACI) were used as metrics to 

evaluate the differences between images. 
 

 

Fig. 5. Comparison of Unified Average Change Intensity (UACI) for 

reconstructed images using Compressed Sensing over a binary 

erasure channel with a fixed probability of erasure set at 0.01 

 

These two measures are utilized to directly show the 

variations between the reconstructed images and the test 

images. NPCR quantifies the rate of pixel changes that occur 

between two images. It indicates the amount of change or 

dissimilarity between the original image and the reconstructed 

image. In the context of these results, decreasing the 

compression ratio leads to a decrease in NPCR values. This 

implies that as the compression rate decreases, there is less 

pixel variation or change between the original and 

reconstructed images. UACI measures the average intensity 

difference between corresponding pixels in two images. It 

quantifies the overall intensity changes or distortions 

introduced during the reconstruction process. Similar to 

NPCR, decreasing the compression data rate results in lower 

UACI values. This means that as the compression rate 

decreases, the average intensity differences between the 

original and reconstructed images decrease, indicating 

reduced distortion. Fig. 4 and Fig. 5 present the NPCR and 

UACI results, respectively, for the reconstructed images after 

communication. By analyzing these figures, one can observe 

that as the compression ratio decreases, the NPCR and UACI 

values also decrease. This indicates that the reconstructed 

images are becoming more similar to the original test images, 

with fewer pixel differences and reduced intensity variations. 

These findings suggest that decreasing the compression data 

rate can lead to improved fidelity and similarity between the 

reconstructed images and the original test images, as reflected 

by lower NPCR and UACI values. As the probability of 

erasure increases, more information is lost, leading to 

decreased fidelity and lower PSNR values in the reconstructed 

images. Overall, this finding emphasizes the influence of the 

channel conditions, specifically the probability of erasure, on 

the quality of reconstructed images when employing 

Compressed Sensing. The effects of different Compression 

Ratios (CR) on the Structural Similarity Index Measure 

(SSIM) values of test images using the CS method over a 

binary erasure channel is illustrated in Fig.6. SSIM is a 

commonly employed objective measure that assesses the 

similarity between two images. It analyzes the structural 
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details, brightness, and contrast similarities between a 

reference image and a distorted one. Higher SSIM values 

indicate a higher level of similarity between the images, with 

1 being the ideal value representing perfect similarity. 

According to the provided explanation, Fig.6 demonstrates 

how the SSIM values of the test images change with different 

CRs in the compressed sensing method [22] over a binary 

erasure channel. The figure reveals that as the CR increases, 

the SSIM values decrease. This implies that as the 

compression ratio becomes higher, there is a greater loss of 

similarity or degradation in the quality of the reconstructed 

images compared to the original test images. The results 

indicate that higher SSIM values are consistently associated 

with higher compression ratios. This suggests that when a 

higher CR is applied, the reconstructed images have a closer 

resemblance to the original test images, resulting in a higher 

level of structural similarity. The figure highlights that the 

Peppers image has better SSIM performance compared to the 

other test images. It achieves a higher SSIM value, indicating 

a greater level of similarity and better preserved structural 

information in the reconstructed image for this specific image. 

Overall, Fig.6 provides insights into the impact of different 

CRs on the SSIM values of test images in the compressed 

sensing method over a binary erasure channel. It demonstrates 

the trade-off between compression ratio and image similarity, 

where higher compression ratios result in decreased SSIM 

values and reduced similarity to the original images. 

Additionally, it highlights the relative performance of the 

Peppers image in terms of SSIM compared to the other test 

images. It means that our scheme also has very good 

compression recovery performance. We can see that the Boat 

image performs the worst among the compared samples, more 

so at lower compression ratios. The performance of the 

compressed sensing method over the Binary erasure channel 

is shown in Fig. 7. When the test images are passed through 

the compressed sensing method over the binary erasure 

channel then the performance of the reconstructed image 

quality is good as compared to without passing through the 

compressed sensing method. That is when the image is passed 

through without using the compressed sensing method the 

reconstructed image quality is worse as shown in Fig 7. The 

compressed sensing method with compression ratio is one that 

can maintain a better quality of the received image at a 

probability of erasure (ε) of 0.01. In this manuscript, image 

communication is implemented using a compressed sensing 

method over a binary erasure channel. The various standard 

images are evaluated like the original ones. The PSNR of the 

suggested method can enhance the quality of the received 

image with an erasure probability (ε) of 0.01.  

We can achieve a satisfactory peak signal-to-noise ratio 

(PSNR) value of 31.5617 dB and obtain a well-reconstructed 

image. The PSNR performances of the reconstructed 

'Cameraman,' 'Peppers,' and 'Boats' images, all of which were 

resized to the same dimensions are illustrated in Fig.8. In this 

simulation, we employed a compressed sensing scheme for 

image transmission and compared it to transmit the image 

without utilizing compressed sensing. 

Fig. 6: Impact of compression ratio on SSIM performance over the 

binary erasure channel with an erasure probability of 0.01. 

 

 
Fig. 7. Comparison of the reconstruction quality of the Cameraman 

image for the different probability of erasure values 

 

 
Fig. 8. PSNR (dB) performance comparison of different images over 

the binary erasure channel 
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Fig.9. The results of evaluating the error in image reconstruction, 

comparing the use of compressed sensing versus not using 

compressed sensing, when transmitted over a binary erasure channel 

 

The results indicate that the worst outcome was observed 

when the compressed sensing scheme was not used, while 

better results were achieved when compressed sensing was 

employed. Furthermore, the boat image exhibited the poorest 

performance, whereas the Peppers image exhibited the most 

favourable performance within this figure. Fig.9: The results 

of evaluating the error in image reconstruction, comparing the 

use of compressed sensing versus not using compressed 

sensing, when transmitted over a binary erasure channel. 

Table 1 demonstrates the calculation and comparison of Peak 

Signal-to-Noise Ratio (PSNR) values for reconstructed images 

using Compressed Sensing over binary erasure channels with 

varying probabilities of erasure. The results indicate that as 

the probability of erasure increases, the quality of image 

reconstruction proportionally degrades. Notably, the pepper 

image exhibits superior image quality with a PSNR value of 

32.6853(dB), while the cameraman image demonstrates the 

poorest quality with a PSNR value of 25.8603(dB) when 

employing the compressed sensing technique over the binary 

erasure channel. The Bit Error Rate (BER) is determined by 

dividing the number of bit errors that occurred during 

transmission by the total number of bits transmitted.   The 

evaluation of the proposed compressed sensing method over a 

binary erasure channel is illustrated in Fig.10. The assessment 

is based on calculating the Structural Similarity Index (SSIM) 

between the original image and the recovered image using the 

compressed sensing technique alone, without employing any 

additional compression methods. This procedure is carried out 

for every image in the database, and the mean SSIM values 

are graphed. The graph in Fig.10 demonstrates how the SSIM 

varies with different probabilities of erasure for different 

images transmitted through the binary erasure channel. 

The results indicate that as the probability of erasure 

increases, the SSIM values decrease. Overall, the compressed 

sensing approach demonstrates superior performance, as 

evidenced by the improved results shown in the figure. 

Table 2 presents the Bit Error Rate (BER) and Structural 

Similarity Index (SSIM) for various message bit lengths under 

different erasure probabilities [23,24]. The proposed 

compressed sensing scheme achieves a significantly low BER, 

indicating effective image reconstruction. The SSIM values, 

close to 1, show that the reconstructed Peppers images closely 

resemble the originals, demonstrating excellent performance 

in high-quality recovery over the binary erasure channel. 

TABLE 1 
COMPARISON OF PEAK SIGNAL TO- NOISE RATIO (PSNR) VALUES FOR 

DIFFERENT RECONSTRUCTED IMAGES USING COMPRESSED SENSING 

OVER A BINARY ERASURE CHANNEL WITH VARYING PROBABILITIES OF 

ERASURE 

 
Image 

 

Channel 

 

PSNR 

(dB) 

(ε=0.01) 

PSNR 

(dB) 

(ε=0.02) 

PSNR 

(dB)  

(ε=0.04) 

PSNR 

(dB) 

(ε=0.08) 

Peppers CS+BEC 32.6853 24.8652 22.2209 19.1404 

BEC 28.0728 24.8360 21.7353 18.7947 

Boats CS+BEC 27.8469 25.1030 22.0436 18.3463 

BEC 26.8603 24.1775 21.1410 17.9173 

 

 

Camera

man 

CS+BEC 25.2869 22.1052 20.1721 19.2863 

BEC 24.6440 21.4695 19.7643 18.4493 

 

 

Lena 

CS+BEC 27.2263 25.5896 21.8236 19.8236 

BEC 26.9462 24.1448 20.0570 17.8236 

 

TABLE 2 
COMPARISON OF SSIM AND BER VALUES FOR PEPPERS 

RECONSTRUCTED IMAGES USING COMPRESSED SENSING OVER A BINARY 

ERASURE CHANNEL WITH VARYING PROBABILITIES OF ERASURE. 

Image Channel Parame
ters 

ε=0.02 ε=0.04 ε=0.06 ε=0.08 

Peppe
rs 

CS+BE

C 

SSIM 0.7091 0.5560 0.4767 0.4169 

BER 0.0098 0.0198 0.0292 0.0390 

BEC SSIM 0.8751 0.7763 0.7260 0.6742 

BER 0.0031 0.0062 0.0094 0.0126 

 

 
Fig. 10. Comparison of SSIM values between two images using 

compressed sensing over a binary erasure channel with varying 

probabilities of erasure (ε) 
 

The table compares two scenarios: a binary erasure channel 

with compressed sensing and one without, both at varying 

erasure probabilities. BER measures reconstruction quality, 
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with higher values indicating worse quality, while SSIM 

quantifies structural similarity, with values closer to 1 

signifying higher similarity. Notably, the best image quality 

was achieved at a probability of erasure of 0.01, with a PSNR 

value of 32.68 dB. On the other hand, the lowest image 

quality, with a PSNR value of 18.23dB, was observed when 

the probability of erasure was 0.08 in Table 1. These values 

provide an assessment of the reconstruction quality under 

different erasure probabilities. The results highlight the effect 

of erasure probabilities and noise on image quality and 

demonstrate the ability of Compressed Sensing to 

communicate the sparse signal through the binary erasure 

channel in figures to the visual analysis under different 

erasure probabilities, and how the compressed sensing method 

performs under varying levels of data loss is illustrated in 

Fig.11. This analysis helps determine the robustness and 

effectiveness of the compressed sensing technique in 

reconstructing images accurately despite the presence of 

erasures. Fig.12 displays the results obtained for four images: 

Lena, Cameraman, Boats, and Peppers. The figure reveals that 

there is no noticeable visual degradation between the original 

and reconstructed images. This is evident from the fact that all 

reconstructed images achieved acceptable image quality, as 

indicated by their PSNR values of 24.9059dB with a 

probability of erasure is 0.02 over binary erasure channel with 

compressed sensing. The objective results for these four 

images are presented in the figure as well. Specifically, the 

reconstructed images closely resemble the original images, 

achieving PSNR values of 22.3368dB, 24.7223dB, 

23.2383dB, and 24.9059dB, respectively. These PSNR values 

indicate that the proposed compressed sensing scheme is 

capable of reconstructing images with high quality. Fig.12 

confirms that the reconstructed images closely resemble their 

original counterparts. The similarity is measured through the 

PSNR values, which indicate how well the compressed 

sensing scheme was able to recover the images. Overall, the 

obtained results suggest that the proposed compressed sensing 

scheme is effective in reconstructing images with good 

quality, as indicated by the visually similar reconstructed 

images and the acceptable PSNR values. This highlights the 

potential of compressed sensing as a viable approach for 

efficient image compression and reconstruction without 

significant loss of visual information. The Mean Opinion 

Score (MOS) is a commonly used metric to assess the 

subjective quality performance of images. It represents the 

average rating given by a group of human observers or 

participants to evaluate the quality or subjective experience of 

a particular stimulus. Figure 14, compares the MOS values for 

different reconstructed images using Compressed Sensing 

(CS) in two scenarios: one with CS over a binary erasure 

channel and another without any compression technique over 

the same channel. The figure depicts the performance 

comparison of the CS method by evaluating the MOS values 

for different reconstructed images under varying probabilities 

of erasure. The figure shows that using Compressed Sensing 

results in a significant improvement in image quality 

compared to not using any compression technique. This is 

evident from the higher MOS values obtained with CS. In the 

figure, the maximum and minimum MOS values are achieved 

for both scenarios. For the CS method over the binary erasure 

channel, the maximum MOS value obtained is 28.2614(dB) at 

a probability of erasure of 0.01, indicating excellent image 

quality. On the other hand, the minimum MOS value is 

19.1491(dB) at a probability of erasure of 0.08, indicating a 

slightly lower perceived quality. When the images are passed 

through the binary erasure channel without any compression 

method, the maximum MOS value obtained is 26.6308(dB), 

and the minimum MOS value is 18.2462(dB), both at the 

same probability of erasure [25-27].  

 

 

Fig. 11. A visual analysis was conducted to compare the quality of 

reconstructed images using the compressed sensing method under 

various erasure probabilities on a binary erasure channel 

 

 
Fig.12. The performance comparison of different reconstructed 

images based on compressed sensing over the binary erasure channel 

with varying probabilities of erasure 
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These values suggest a relatively lower perceived quality 

compared to the CS method. Based on these results, it can be 

concluded that the proposed CS method performs better in 

terms of MOS values, indicating improved image quality 

compared to the scenario without any compression technique. 

 

Fig. 13. Theoretical MOS performance and its simulation results of 

Compressed sensing over a binary erasure channel 

 

The Mean Opinion Score (MOS) is a metric commonly 

used in quality assessment studies to evaluate the subjective 

opinion of human observers regarding the perceived quality of 

a signal or image. In this context, it seems that the MOS 

values were obtained by conducting experiments or surveys 

with human participants who assessed the quality of the 

reconstructed images resulting from compressed sensing over 

the binary erasure channel. Fig.13 displays a graph showing 

the MOS values obtained from the simulation and theoretical 

calculations. The simulation refers to the practical 

implementation of compressed sensing over the binary erasure 

channel, where real-world experiments or computer 

simulations were performed to reconstruct images and obtain 

subjective quality scores. On the other hand, the theoretical 

values might be obtained through mathematical models or 

analytical calculations that predict the expected quality 

performance of the compressed sensing technique. According 

to the statement, the graph in Fig.13 shows that the simulation 

and theoretical values exhibit almost similar results. This 

suggests that the theoretical predictions align closely with the 

practical outcomes obtained from the simulations or 

experiments. It implies that the compressed sensing technique 

performs well in terms of image quality over the binary 

erasure channel, as indicated by the average PSNR values of 

the reconstructed images. By taking the average PSNR value 

of four reconstructed images and comparing it with the 

average value of the theoretical data, the graph in Fig.13 

likely demonstrates the similarity between the two 

approaches. This agreement between the simulation and 

theoretical values provides confidence in the accuracy of the 

theoretical predictions and validates the effectiveness of 

compressed sensing in this specific scenario. In this section, 

the goal is to evaluate the performance of compressed sensing 

in terms of image quality. Two images, ”peppers” and 

”boats,” are likely used as test images for the evaluation.  

   

 

Fig. 14. The Peak Signal-to-Noise Ratio values obtained from 

simulations and theoretical calculations for compressed sensing 

applied to reconstruct “peppers” and “boats” images over a binary 

erasure channel 

 

The PSNR is a commonly used metric in image processing 

to measure the quality of a reconstructed image compared to 

the original, and higher PSNR values generally indicate better 

quality. A key finding from the graph in Fig. 14 is that the 

PSNR values from simulations and theoretical calculations are 

nearly identical. This close alignment suggests that the 

theoretical models accurately predict the performance of 

compressed sensing in practical scenarios. The results 

collectively demonstrate the effectiveness of compressed 

sensing for image reconstruction, as evidenced by the 

similarity in PSNR values for both the "peppers" and "boats" 

images. The PSNR values from simulations are derived from 

practical experiments, while theoretical values are based on 

mathematical models that account for the characteristics of the 

binary erasure channel. The similarity between these results 

indicates that theoretical predictions align closely with 

practical outcomes, underscoring the effectiveness of 

compressed sensing for image reconstruction. Fig. 13 and 14 

reinforce the effectiveness of compressed sensing techniques 

in reconstructing images over a binary erasure channel. The 

close match between simulation and theoretical PSNR values 

validates the theoretical framework, providing confidence in 

the application of these methods in practical scenarios. 

IV. CONCLUSION 

The performance evaluation of compressed sensing for 

wireless communication over a Binary Erasure Channel 

reveals several important findings. Firstly, it is observed that 

the reconstruction quality and information loss are directly 

influenced by the channel conditions. As the channel 

conditions deteriorate, both the compressed sensing and the 

reconstruction algorithm experience a higher loss of 

information. This highlights the sensitivity of channel 

impairments even in the presence of compressed sensing. 

However, compressed sensing improves the PSNR, SSIM, 

NPCR, UACI, and BER performance appreciably. 

Furthermore, the results demonstrate that even in challenging 

channel conditions, such as a probability of erasure around 

0.17 - 0.25, a decent level of reconstruction quality can still be 

achieved. This is evidenced by the obtained average peak 



 

 

July 2025 Microwave Review 

57 

signal-to-noise ratio (PSNR) value of 33.1262 dB and the 

successful reconstruction of the images. These findings 

emphasize the potential of compressed sensing in wireless 

communication systems, even in the presence of channel 

impairments. However, it also highlights the importance of 

considering the impact of channel conditions and 

implementing appropriate channel error control mechanisms 

and reconstruction algorithms to mitigate information loss. 
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